
© 2014 OpenTravel Alliance www.opentravel.org

OTM-DE Namespaces Reference
Document Purpose:

This document describes how both the Designer and the repositories are used to manage namespaces

in the OpenTravel Model Development Environment.

Contents
OTM Namespaces ... 2

Namespace Overview ... 2

XML Namespaces .. 2

Namespaces in Programming Languages ... 3

Namespaces and OTM-DE .. 3

Versions ... 4

Extensions and Ownership .. 4

Namespace and Business Domains ... 5

Repository Access Controls ... 5

About OpenTravel:

The OpenTravel Alliance provides a community where companies in the electronic distribution supply chain work
together to create an accepted structure for electronic messages, enabling suppliers and distributors to speak the
same interoperability language, trading partner to trading partner. Tens of thousands of the OpenTravel message
structures are in use, carrying tens of millions of messages between trading partners every day.

Members do the work of identifying what messages are needed, prioritize the work and collaborate to create the
messages. Members who are looking for more information on related project team work or who wish to access
the OTM repository can send inquiries to architecture@opentravel.org.

Note: This document supports implementers using the OTM-DE Model Builder in the creation and sharing of
models that automatically generate xml schema. The ability to access and extend the OpenTravel Model is
available only to OpenTravel members. For more information please contact us at membership@opentravel.org.

file:///C:/Users/MA/AppData/Roaming/Microsoft/Word/architecture@opentravel.org
mailto:membership@opentravel.org

Page 2 of 6

© 2014 OpenTravel Alliance www.opentravel.org

OTM Namespaces

The OTM Repository and Development Environment make extensive use of namespaces. The OTM

Designer user interface guides designers in selecting namespaces for their libraries and XSD Schemas,

and namespaces are the basis of how the repository controls user access to libraries. This document

gives an overview to namespaces and how they are used in the OTM Development Environment to

implement access controls.

Namespace Overview

In general terms, namespaces make sets of unique names. Said a different way, a namespace is a

container for a set of names. The same name can be present in multiple namespaces, but within a

namespace the name must be unique.

For people family names are similar to namespaces (e.g. Joe Smith is different from Joe Brown).

However family names are not proper namespaces because there is no authority assuring family names

are unique—indeed, there is more than one “Joe Smith”.

Authority is an important concept for proper namespaces. There must be an authority that assures

names within the namespace are unique and there must be a way to know the identity that specific

authority. The OTM Development Environment is the authority for OTM objects and uses XML

namespaces to identify the authority. This approach is compatible with XML and most modern

programming languages.

XML Namespaces

XML Namespaces when implemented with Namespace aware processors can be proper namespaces.

They define the mechanics of how the authority is to determine if names are unique and which names

must be unique. Namespaces in XML1 defines how to use an URL to identify a namespace authority and

further requires namespace aware XML processors to assure that all global element names within the

namespace are unique.

To make working with namespaces easier, Namespaces in XML also defines how a prefix can be used as

a more concise namespace identifier. The standard also defines how to define default namespace to be

used when no prefix is present.

In the following XML message, two namespaces are used one with prefix “otm”

(http://opentravel.org/OTM/Common/v0) and a default namespace to use when no prefix is present

(http://example.com/UserGuides/Patterns/v0).

<GetRQ xmlns=”http://example.com/UserGuides/Patterns/v0”
xmlns:otm="http://opentravel.org/OTM/Common/v0" >

 <GeoData_Query>
 <otm:Type>Airports</otm:Type>

1
 Namespaces in XML 1.1 (Second Edition); W3C; 16 August 2006; http://www.w3.org/TR/xml-names11/

http://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/xml-names11/
http://example.com/UserGuides/Patterns/v0

Page 3 of 6

© 2014 OpenTravel Alliance www.opentravel.org

 </GeoData_Query>
</GetRQ>

OTM-DE incorporates all the features of XML namespaces. OTM-DE goes a step further by providing

controls around what URL is used for each namespace. Each OTM-DE controlled namespace identifier is

guaranteed to be unique relative to all other identifiers managed in the repository. This assures that

each namespace:object-name within the repository is unique.

Namespaces in Programming Languages

In object oriented programming languages, a namespace (also called name scope) is an abstract

container that holds a logical grouping of unique identifiers or symbols (i.e., names).

 In Java, a package declaration identifies to which namespace a class belongs.

 In C++, a namespace is defined with a namespace block.

 In C#/.NET namespaces are declared using explicit namespace declarations.

 In all cases, the language requires that each namespace/name is unique. Similar to an XML namespace

aware processor, the programming and application runtime environments are the authorities that

assure all classes are unique within their namespace.

Like XML, programming language namespaces rely upon a namespace identifier. Developers have

adopted a convention for their package/namespaces identifiers that also uses the internet naming

authority; for example “org.opentravel” as the beginning of a package identifier for an application

created by OpenTravel.

Binding tools create programming language classes from XML Schemas. These tools leverage the fact

that XML namespace identifiers and package identifiers

both use URLs and serve the same purpose. By default

these tools directly map the XML namespace to the

programming language namespace.

The OTM Development Environment controls over XML

namespaces therefore also assures class packages created

are uniquely identified. This enables application developers to match their software objects to OTM and

XML objects, enables software reuse and eases maintenance.

Namespaces and OTM-DE

The OTM Development Environment is designed to provide the authoritative controls over namespace

identifiers to assure that each and every object manage within a repository is uniquely identified by its

object name and namespace identifier. This gives developers assurance that their programming objects

match the data objects found in the messages. And it gives them the assurance they can reuse these

programming objects on any message that contains the matching data objects.

Page 4 of 6

© 2014 OpenTravel Alliance www.opentravel.org

To fully leverage the benefits of managed namespaces, OTM-DE uses namespaces to distinguish multiple

versions of an object, to identify ownership to distinguish OpenTravel defined objects from company

specific objects, and to identify and differentiate objects in different business domains. OTM-DE also

provides access controls based on namespace structures to facilitate team development and implement

governance.

Versions

Each namespace managed by OTM-DE ends with a version identifier. This not only assures that each and

every version of the object is uniquely identified, it also assures that the version identifier is

automatically and consistently applied so that application developers can place their trust in them and

take full advantage of the relationships.

Here are examples of namespace identifiers for three different versions a library:

 Major version 1 = http://temp.example.com/test/test/v1

 Minor version 1.1 = http://temp.example.com/test/test/v1_1

 Patch version 1.2.1 = http://temp.example.com/test/test/v1_2_1

Extensions and Ownership

Namespaces are used within OTM-DE to identify the owner of an object as well as extensions to the

object. Ownership is defined by the “root namespace” and is assigned by the repository manager. Only

namespaces that begin with the root namespace assigned by the repository manager can be saved in

that repository.

This allows OTM developers to mix and match content from multiple

organizations without the potential of confusion or contention over object

names. For example, a designer could create an object that could contain

“Profiles” as defined by OpenTravel, Company1 and Company2. OTM-DE

will assure that the XML and programming language namespace

requirements are met.

Namespace are also used for extensions. Extendable OTM objects

automatically have a place added to their XML declaration a place for data from other namespaces to be

added. This data must be in a different namespace to assure there is no confusion over which data is

defined by the OTM object and which is in the extension.

 <xsd:element minOccurs="0" ref="ota2msg:ExtensionPoint_Detail"/>

<xsd:complexType name="ExtensionPoint">

 <xsd:sequence>

 <xsd:any minOccurs="0" maxOccurs="unbounded" namespace="##other" processContents="lax"/>

 </xsd:sequence>

Page 5 of 6

© 2014 OpenTravel Alliance www.opentravel.org

</xsd:complexType>

Namespace and Business Domains

The repository namespaces are designed to be hierarchical. These hierarchies are designed to permit

assignment of namespace permissions to teams and to provide a logical namespace for common, shared

content.

 Each repository has one or more Root Namespace(s) assigned by the repository administrator. The

administrator divides the root namespace into managed namespace(s). Library designers can sub-divide

the managed namespace by providing an extension to their project or library.

Here is an example of how OpenTravel could choose to organize their namespace hierarchy to match

their business domains.

Repository Access Controls

Access Controls in the OTM Library Repository are responsible for assuring that OTM Libraries are

shared responsibly and to enforce control over the namespaces. OTM Repository access controls are

implemented using: users, groups, namespaces, extended-namespaces, libraries and projects. A brief

overview of the access control process is described here. See the OTM-DE User Guide – Repositories for

more detail.

Page 6 of 6

© 2014 OpenTravel Alliance www.opentravel.org

1. Repositories are assigned root-namespaces.

2. Users are assigned to groups.

3. Groups are granted permissions for namespaces (read-final, read-draft, or write).

4. Projects have a namespace chosen from those in the repository.

5. Libraries within the project’s namespace they can become editable.

6. Libraries can be managed in a repository.

Before a repository will manage a library or allow a library to be committed it will ensure:

1. The library is within the project namespace.

2. The project namespace conforms to the namespaces managed in that repository.

3. The user belongs to a group that has write permission for that namespace.

