

© 2014 OpenTravel Alliance www.opentravel.org

OTM-DE Reference Language Specification

Document Purpose:

The purpose of this document is to define the format, constructs, and semantic business rules of an
OpenTravel Model.

About OpenTravel:

The OpenTravel Alliance provides a community where companies in the electronic distribution supply chain work
together to create an accepted structure for electronic messages, enabling suppliers and distributors to speak the
same interoperability language, trading partner to trading partner. Tens of thousands of the OpenTravel message
structures are in use, carrying tens of millions of messages between trading partners every day.

Members do the work of identifying what messages are needed, prioritize the work and collaborate to create the
messages. Members who are looking for more information on related project team work or who wish to access
the OTM repository can send inquiries to architecture@opentravel.org.

Note: This document supports implementers using the OTM-DE Model Builder in the creation and sharing of
models that automatically generate xml schema. The ability to access and extend the OpenTravel Model is
available only to OpenTravel members. For more information please contact us at membership@opentravel.org.

file:///C:/Users/MA/AppData/Roaming/Microsoft/Word/architecture@opentravel.org
mailto:membership@opentravel.org

Page 2 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Table of Contents

Table of Contents

1 INTRODUCTION ... 4

2 CHANGE HISTORY ... 4

3 REFERENCED DOCUMENTS ... 4

4 DOCUMENTATION CONVENTIONS AND TERMINOLOGY... 5

5 OPEN TRAVEL MODEL... 6

6 OPEN TRAVEL LIBRARIES .. 6
6.1 COMMON LIBRARY CHARACTERISTICS .. 6

6.1.1 Library Includes ... 7
6.1.2 Library Imports .. 7

6.2 USER-DEFINED LIBRARIES (OTM).. 8
6.3 LEGACY SCHEMAS (XSD) ... 9
6.4 BUILT-IN LIBRARIES ... 9

7 OPEN TRAVEL PROJECTS ... 9

8 OPEN TRAVEL LIBRARY CONSTRUCTS .. 10
8.1 CONTEXT DECLARATIONS .. 10
8.2 DOCUMENTATION ... 11
8.3 EQUIVALENTS .. 12
8.4 EXAMPLES ... 13
8.5 ATTRIBUTES ... 13
8.6 ELEMENTS .. 14
8.7 INDICATORS .. 15
8.8 NAMED ENTITIES .. 16
8.9 STANDARD FACETS ... 16
8.10 CONTEXTUAL FACETS ... 18
8.11 SIMPLE FACETS .. 19
8.12 LIST FACETS ... 20
8.13 ALIASES ... 20
8.14 ROLES .. 20
8.15 ENUMERATION LITERALS .. 21

9 OPEN TRAVEL LIBRARY TERMS ... 21
9.1 SIMPLE TYPES .. 21
9.2 CLOSED ENUMERATIONS.. 23
9.3 OPEN ENUMERATIONS ... 24
9.4 VALUES WITH ATTRIBUTES ... 24
9.5 CORE OBJECTS ... 25
9.6 BUSINESS OBJECTS .. 27
9.7 OPERATIONS .. 29
9.8 SERVICES ... 31
9.9 EXTENSION POINT FACETS .. 32
9.10 XSD SCHEMA TERMS .. 33

Page 3 of 49

© 2014 OpenTravel Alliance www.opentravel.org

10 EXTENSIONS AND INHERITANCE OF TERMS .. 33

11 VERSIONING OF LIBRARIES AND TERMS .. 34
11.1 VERSION SCHEMES .. 34
11.2 VERSIONING OF OTM LIBRARIES ... 35
11.3 VERSIONING OF OTM TERMS ... 36

APPENDIX A: GLOSSARY ... 37

APPENDIX B: NAMING CONVENTIONS FOR XML TYPES AND ELEMENTS 38

APPENDIX C: SEMANTIC VALIDATION RULES FOR OTM MODELS 40
COMMON VALIDATION RULES .. 40
LIBRARY VALIDATION RULES ... 41
1.1 ... 41
OTM PROJECT VALIDATION RULES ... 41
CONTEXT DECLARATION VALIDATION RULES ... 42
DOCUMENTATION VALIDATION RULES ... 42
EQUIVALENT VALIDATION RULES .. 42
EXAMPLE VALIDATION RULES .. 42
ATTRIBUTE VALIDATION RULES .. 43
ELEMENT VALIDATION RULES .. 43
INDICATOR VALIDATION RULES ... 44
 .. 45
STANDARD FACET VALIDATION RULES... 45
CONTEXTUAL FACET VALIDATION RULES .. 45
SIMPLE FACET VALIDATION RULES ... 45
ROLE VALIDATION RULES ... 45
ENUMERATION LITERAL VALIDATION RULES .. 46
SIMPLE TYPE VALIDATION RULES ... 46
CLOSED ENUMERATION VALIDATION RULES ... 47
OPEN ENUMERATION VALIDATION RULES ... 47
VALUE WITH ATTRIBUTES VALIDATION RULES .. 47
CORE OBJECT VALIDATION RULES ... 48
BUSINESS OBJECT VALIDATION RULES ... 48
OPERATION VALIDATION RULES .. 48
SERVICE VALIDATION RULES .. 49
EXTENSION POINT FACET VALIDATION RULES ... 49

file:///C:/Users/MA/Documents/OTA/Projects%20&%20Teams/Architecture%20Workgroup/GitHub%20-%20OTM/OTM-DE-Reference-LanguageSpecification%20(Recovered).docx%23_Toc388536356

Page 4 of 49

© 2014 OpenTravel Alliance www.opentravel.org

1 Introduction

The OpenTravel 2.0 project originally began as an attempt to define a better and more technology-
friendly style guide for XML schemas. Soon after its inception, however, it became clear that that the
resulting OTA2.0 style guide would be difficult, if not impossible, for an individual to follow while
authoring hand-crafted schemas. At that point, the effort shifted from documenting XSD authoring
guidelines to the definition of a formal information modeling language.

This language, later dubbed the OpenTravel Modeling language (OTM), could be used to define the data
models required for travel industry data interchange. Those models could then be compiled into XML
schemas using the technical standards that were originally to be specified in the style guide manual.
This approach eliminates the need for extensive XML knowledge during the model design process. Once
complete, the designer can generate valid and technology binding-friendly schemas that can
immediately be utilized by application development teams.

The purpose of this document is to define the format, constructs, and semantic business rules of an
OpenTravel Model. The details of XML schema generation will not be addressed here, but may be found
in the OTA2.0 Schema Compiler Specification document.

2 Change History

Revision Author(s) Summary of Changes

1.0 S. Livezey Initial Draft

3 Referenced Documents

A number of the chapters and sections of this document reference the following documents:

1. OTA2.0 Library Schema, version 1.4.6 (included in OTM-DE Model Designer download)
2. OTA2.0 Project Schema, version 1.0.0 (included in OTM-DE Model Designer download)

Page 5 of 49

© 2014 OpenTravel Alliance www.opentravel.org

4 Documentation Conventions and Terminology

This section introduces the typography and highlighting used in this document to present various types
of technical material.

Normative Terms

Within the prose of this document, the following terms denote normative specifications and are defined
as follows:

MAY Models, documents, and processors are permitted to function in the stated manner
but need not behave exactly as described.

SHOULD It is recommended that models, documents, and processors function in the stated
manner, but there may be valid reasons for them not to; it is important that the full
implications be understood before adopting behavior at variance with the
recommendation.

MUST Models, documents, and processors are required to behave as described in order to
be in compliance with this specification.

MUST NOT Models, documents, and processors are forbidden to behave as described in order to
be in compliance with this specification

Semantic Validation Terminology

When describing the semantic validation rules of an OTM model, each of the possible evaluation criteria
is qualified with of the following severity levels:

ERROR Occurs when a processor detects the violation of a behavior specified using the
normative terms of “MUST” or “MUST NOT”. Under this condition, follow-on processing
cannot proceed until all such non-compliances have been corrected.

WARNING Occurs when a processor detects the violation of a behavior specified using the
normative term of “SHOULD”. Under this condition, follow-on processing may proceed
without the correction of any such non-compliance.

Property Lists

Many sections of this document provide tables of information that describe the content or properties
for some aspect of the OTM modeling language. Unless otherwise stated, the information provided in
these lists should be considered normative.

The following table demonstrates the format used to present property lists within this document:

Property Name Property Type Description

Property 1 String Property 1 description…

Property 2 Integer Property 2 description…

Property 3 IDREF Property 3 description…

Unless otherwise specified, the ‘Property Type’ column of these tables should be assumed to reference
a standard XML data type or some other type defined in the OTA2.0 Library Schema document (see
Appendix A for details).

Page 6 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Descriptive Content and References

In many cases non-normative content is provided to more effectively describe or demonstrate points
from the normative sections of the document. The principle types of content provided in this manner
include examples and schema excerpts.

The following table demonstrates the format used to present example content within this document:

Example: Example Title
<example name=”bar”>

 <type>foo</type>

</example>

The following table demonstrates the format used to present schema excerpts within this document:

Schema Excerpt: Excerpt Title [schema-filename.xsd]
<xs:complexType name=”example”>

 <xs:sequence>

 <xs:element ref=”type”/>

 </xs:sequence>

 <xs:attribute name=”name” type=”xs:string”/>

</xs:complexType>

5 Open Travel Model

An Open Travel model is composed of one or more libraries, each of which contains a number of
vocabulary terms. Each model is considered to be the “universe” of all libraries that have been loaded
at any given time for the purpose of editing and/or compilation into derived formats such as XML
schemas.

6 Open Travel Libraries

Open travel models can contain any number of three different types of libraries, each of which are
described in further detail in this section:

1. User-Defined Libraries
2. Legacy XML Schemas
3. Built-In Libraries

6.1 Common Library Characteristics

Each type of library contains a collection of entity definitions or terms that are considered to be global
definitions within an Open Travel model. In addition to its list of terms, all are composed of the
following properties or characteristics:

Property Name Property Type
1
 Description

1
 For a detailed listing of property types, see the listing of simple types in the schema definition of the Library XML

format provided in the OTA2.0 Library Schema (see the Referenced Documents section for more information).

Page 7 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Property Name Property Type
1
 Description

Library URL URL Denotes the URL location from which the library’s content
was loaded. This value is not explicitly specified in the
content of the library; instead, it is identified by the URL
location of the content itself. Relative URI’s that are
specified within a library are always treated as a relative
path from this URL.

Name Name_File The name of the library

Namespace URI The target namespace of the library; all terms defined in
the library are assigned to this namespace

Prefix String Short identifier used as an alias for the library’s
namespace when its terms are referenced by the content
of other libraries

Includes URI Relative URI reference(s) to dependent libraries assigned
to the same namespace (see Section 6.1.1)

Imports Library Import References to dependent libraries assigned to a different
namespace (see Section 6.1.2)

In many cases, the terms of a library will refer to terms that are defined in other libraries. In these
situations, the referring library MUST define a reference to its dependencies using import and/or include
directives. During the loading process, all of the specified import/include dependencies MUST be resolved
in order for the resulting model to be considered valid.

6.1.1 Library Includes

A library include is a relative URI reference to the library URL location of a dependent library that is
assigned to the same namespace as the referencing library. The exact format of the library include MAY
change depending upon the type of library, but the function of an include is identical, regardless of its
format.

6.1.2 Library Imports

A library import specifies a reference to a dependent library that is assigned to a different namespace
than the referencing library. While the format of an import varies by library type, each import provides
the following information:

Property Name Property Type Description

Namespace URI The namespace of the library or libraries to be imported

Prefix String The alias to be used within the importing library when
referencing terms that are assigned to the imported
namespace; import prefixes MUST be unique within the
importing library

File Hint String Space-separated list of relative URI’s for libraries being
imported

Page 8 of 49

© 2014 OpenTravel Alliance www.opentravel.org

6.2 User-Defined Libraries (OTM)

User-defined libraries, commonly known as OTM files because of their ‘.otm’ file extension, serve as
containers for vocabulary terms of the OTM modeling language. In addition to the common properties
defined in section 6.1, user-defined libraries provide the following properties:

Property Name Property Type Description

Version Scheme String An identifier that indicates the scheme used for version
numbering, including how version identifiers are encoded
into a library’s namespace URI. At the time of this
document’s publication, the only supported version
scheme identifier is “OTA2”.

Status Library_Status Indicates the maturity level and editability of a user-
defined library. Valid values are “DRAFT” and “FINAL”.
The contents of DRAFT libraries MAY be modified; libraries
in FINAL status are considered locked and MUST NOT be
changed.

CRC Value Long Integer If the status of a library is FINAL, this property will contain
a long integer value that is the calculated CRC for the
library’s content. This is used to determine if the library’s
content has by manually modified after assigning it to
FINAL status.

Comments String A textual description or other remarks related to the user-
defined library

The following example XML snippet contains an excerpt from a user-defined library:

Example: Sample User-Defined (OTM) Library
<?xml version="1.0" encoding="UTF-8"?>

<Library xmlns="http://www.OpenTravel.org/ns/OTA2/LibraryModel_v01_04"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <VersionScheme>OTA2</VersionScheme>

 <Status>Final</Status>

 <CrcValue>0123456789</CrcValue>

 <Namespace>http://www.OpenTravel.org/ns1/v1</Namespace>

 <Prefix>ns1</Prefix>

 <Name>Foo_Library</Name>

 <Includes>Bar_Library_1_0_0.otm</Includes>

 <Import prefix="fcom" fileHints="Foo_Common_1_0_0.otm"

 namespace="http://www.OpenTravel.org/ns1/common/v1"/>

 <Import prefix="xs" namespace="http://www.w3.org/2001/XMLSchema"/>

 <!-- List of library terms... -->

</Library>

User defined libraries MAY contain the following terms (see Section 9 for details):

 Simple Types

 Closed Enumerations

 Open Enumerations

 Values With Attributes

 Core Objects

 Business Objects

Page 9 of 49

© 2014 OpenTravel Alliance www.opentravel.org

 Service

Multiple instances of each type of term are allowed, except for services. User-defined libraries MUST NOT
contain more than one service definition per library file.

6.3 Legacy Schemas (XSD)

In some cases, it is necessary for an OTM user-defined library to reference types and/or elements that
are contained in a non-OTM schema. For this reason the OTM modeling language supports references
to certain entities defined in legacy XML schema documents. Legacy schemas MUST conform to the
Schema for Schemas format as described in the W3C Recommendations for XML Schema, Part 1
(http://www.w3.org/TR/xmlschema-1/#normative-schemaSchema).

User-defined libraries that import or include legacy schemas MUST NOT reference legacy schema terms
that are not among the following (see Section 9.10 for details):

1. XSD Simple Types
2. XSD Complex Types
3. XSD Global Elements

6.4 Built-In Libraries

Built-in libraries are typically bundled with the processors used to parse and load the contents of an
OpenTravel model. As pre-bundled content, these built-in libraries are automatically present in any
model, and MAY take the form of either user-defined libraries (.otm) or legacy schemas (.xsd).

Because built-in libraries are automatically loaded into all Open Travel models, there is no need for user-
defined libraries to provide a specific include directive for the built-in library (assuming the user-defined
library is assigned to the same namespace as the built-in). When importing a built-in library, it is only
necessary to specify the namespace of the built-in and an identifying prefix for that namespace (file
hints are not necessary to identify an imported built-in library).

7 Open Travel Projects

An Open Travel project (.otp) file describes a logical grouping of libraries that may or may not be related
by include/import directives. A project grouping can contain a subset of the overall Open Travel model
that is to be treated as a single compilation unit.

Each library that is contained within an Open Travel project is known as a project item. Library files that
reside on the same local file system as the project itself are known as unmanaged project items.
Unmanaged libraries MUST be referenced using an absolute file path or a relative path from the location
of the referencing project file. Libraries that are stored in an OTM repository are managed project items
that MUST be accessed via the OTM repository web service API’s (see the Referenced Documents for
more information).

The following XML sample contains an Open Travel project with a mix of managed and unmanaged
libraries:

Example: Sample Open Travel Project (OTP)

http://www.w3.org/TR/xmlschema-1/#normative-schemaSchema

Page 10 of 49

© 2014 OpenTravel Alliance www.opentravel.org

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Project xmlns=" http://www.OpenTravel.org/ns/OTA2/Project_v01_00">

 <projectId>http://opentravel.org/ns1</projectId>

 <name>Sample Project</name>

 <description>Project description...</description>

 <ManagedProjectItem defaultItem="true">

 <Repository>OTA2_Repository</Repository>

 <BaseNamespace>http://opentravel.org/ns1</BaseNamespace>

 <Filename>ManagedLibrary_1_3_0.otm</Filename>

 <Version>1.3.0</Version>

 </ManagedProjectItem>

 <UnmanagedProjectItem>

 <FileLocation>libraries/UnmanagedLibrary.otm</FileLocation>

 </UnmanagedProjectItem>

 <RepositoryReferences>

 <RepositoryRef

 repositoryId="Sabre_STL2_Repository">

 http://opentravel.org:81/ota2-repository-service

 </RepositoryRef>

 </RepositoryReferences>

</Project>

In the above example, it should be noted that connectivity information is provided for the OTM
repositories that are referenced by the managed libraries. Processors SHOULD specify this information so
that new processor users can resolve connections to the repositories, even if those users have never
accessed those repositories on prior occasions.

8 Open Travel Library Constructs

The constructs described in this section are the components or building blocks of the library terms
described in later Chapter 9 of this specification.

8.1 Context Declarations

Context declarations provide a mechanism for identifying a system, domain, namespace, or situation
with which other parts of an OTM model may be associated. For example, the XML example values for
an OTM attribute may differ depending on whether the context of the example is for Air Transportation
or Rail. Any entity that can reference a context declaration is said to be context-sensitive.

Context declarations are considered local to the OTM library in which they are defined, and MUST NOT be
referenced by context-associated entities in other libraries. All context declarations support the
following properties:

Property Name Property Type Description

Context String A short identifier (similar to a namespace prefix) that is
used to identify the context within the library in which it
is defined. Context identifiers MUST be unique to the
library that declares the context.

Application Context String An identifier that indicates the system, domain,
namespace, or situation to which the context applies.
Application context identifiers SHOULD typically be
expressed as fully qualified URI’s.

Documentation Documentation Optional documentation for the context declaration.

Page 11 of 49

© 2014 OpenTravel Alliance www.opentravel.org

The following snippet provides an example of context declarations that might be found in an OTM
library:

Example: Context Declaration Samples
<Context context="air"

 applicationContext="http:/opentravel.org/ota2/air"/>

<Context context="rail"

 applicationContext="http:/opentravel.org/ota2/rail"/>

8.2 Documentation

The documentation element enables schema designers to provide annotations and references for
various aspects of an OTM model. All documentation elements MAY contain the following properties:

Page 12 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Property Name Property Type Description

Description String_Documentation The definitive description of the OTM entity

Implementer String_Documentation Implementer-specific note(s) and other textual
information for use by schema designers and
application developers

Deprecated String_Documentation Notification(s) that the entity or term has been
marked for deprecation and possible deletion in
future versions

Reference Any URI URL(s) to reference information for the entity being
documented

More Info Any URI URL(s) to additional external documentation that is
not considered to be an official reference

Other Doc Additional Doc Other context-sensitive documentation item(s) not
included in any of the other elements of the
owning documentation

The following snippet provides an example of documentation content from an OTM library:

Example: OTM Documentation Sample
<Documentation>

 <Description>Description of the OTM model term.</Description>

 <Implementer>Implementation notes...</Implementer>

 <Deprecated>Scheduled for removal in version 2.5.</Deprecated>

 <Reference>http://www.OpenTravel.org/awg/ref.html</Reference>

 <MoreInfo>http://www.OpenTravel.org/awg/demo.html</MoreInfo>

 <OtherDoc context="air">Air transport documentation.</OtherDoc>

 <OtherDoc context="rail">Rail transport documentation.</OtherDoc>

</Documentation>

8.3 Equivalents

Equivalents provide a mechanism for designers to associate parts of an OTM model with an external
application, schema, standard, or database. Equivalent mappings are context-sensitive, allowing
multiple associations for a single OTM model element. When multiple equivalent mappings are
provided, each one MUST be associated with a different context declaration.

Each equivalent is composed of the following properties:

Property Name Property Type Description

Context String The short identifier that associates this equivalent
mapping with a particular context declaration.

Value String The value that indicates the details of the association
with a particular context.

The following example depicts an attribute with multiple equivalent relationships:

Example: Attribute with Multiple Equivalent Mappings
<Attribute name="flightNumber" type="xsd:int">

 <Equivalent context="database">SCHEDULES_TABLE:FLT_NBR</Equivalent>

 <Equivalent context="xmlmsg">SchedRS/Flights/Flight#fn</Equivalent>

</Attribute>

Page 13 of 49

© 2014 OpenTravel Alliance www.opentravel.org

8.4 Examples

Examples allow the schema designer to supply context-sensitive values for simple data types that are
defined and/or referenced in an OTM model. When rendering sample output, processors SHOULD use
these example values to define meaningful output.

Each example is composed of the following properties:

Property Name Property Type Description

Context String The short identifier that associates this example value
with a particular context declaration.

Value String The example value. Processors SHOULD ensure that
example values are value according to the rules of the
simple type for which they are assigned.

The following OTM model snippet shows an attribute with multiple context-sensitive examples:

Example: Attribute with Multiple Examples
<Attribute name="stationCode" type="xsd:string">

 <Example context="air">DFW</Equivalent>

 <Example context="rail">DAL</Equivalent>

</Attribute>

8.5 Attributes

Attributes define named values for simple data types in an OTM model that support the following
properties:

Property Name Property Type Description

Name Name_XML The name of the attribute.

Type Name_Type Local or qualified name of the OTM term that defines
the type of the attribute. If a local name is specified,
processors MAY assume that the namespace of the type
reference is the same as that of the attribute’s owning
term.

Mandatory Boolean Indicates whether the existence of the attribute is
mandatory.

Documentation Documentation Optional attribute documentation provided by the
model designer.

Equivalent Equivalent List of zero or more context-sensitive equivalent
mappings for the attribute.

Example Example List of zero or more context-sensitive example values for
the attribute.

Under normal conditions, attributes MUST only reference simple data types (e.g. simples and closed
enumerations). In the following special circumstances, however, attributes type references MUST be
considered valid even when referencing complex OTM types:

1. If the owner of an attribute is a value with attributes (VWA), other valid attribute types MUST
include open enumerations or VWA’s.

Page 14 of 49

© 2014 OpenTravel Alliance www.opentravel.org

2. If the attribute’s type reference is a top-level core object, the actual type of the attribute MUST be
considered to be the core’s Simple Facet type. In these cases, the core object MUST declare a
simple facet type that is not ‘ota:Empty’ (see section 9.5 for details).

3. List facets MUST only be referenced as an attribute type if the data type of the list facet is a core
object’s simple facet.

The following OTM library excerpt provides a number of valid attribute declarations:

Example: Attribute Declarations
<Attribute name=”foo” type=”LocalSimpleType” mandatory=”false”/>

<Attribute name=”bar” type=”bar:BarSimpleType” mandatory=”true”/>

<Attribute name="stationCode" type="xsd:string">

 <Documentation>

 <Description>Station code attribute description...</Description>

 </Documentation>

 <Example context="air">DFW</Equivalent>

 <Equivalent context="database">LOCATION_TABLE:STATION</Equivalent>

</Attribute>

8.6 Elements

Elements in an OTM model define named values for simple or complex data types. OTM element
definitions are composed of the following properties:

Property Name Property Type Description

Name Name_XML The name of the element.

Type Name_Type Local or qualified name of the OTM term that defines
the type of the element. If a local name is specified,
processors SHOULD assume that the namespace of the
type reference is the same as that of the element’s
owning term.

Reference Boolean Indicates whether the term is to be contained by
reference or by value (default is false). References MUST

NOT be allowed for elements that are assigned to simple
data types.

Mandatory Boolean Indicates whether the existence of at least one element
is mandatory.

Repeat Positive Integer
or ‘*’

Indicates the maximum number of times that the
element can be repeated. A ‘*’ value MUST be specified
to indicate unlimited repeats.

Documentation Documentation Optional element documentation provided by the model
designer.

Equivalent Equivalent List of zero or more context-sensitive equivalent
mappings for the element.

Example Example List of zero or more context-sensitive example values for
the attribute. Examples SHOULD only be supplied for an
element if its type reference is that of a simple data
type.

Page 15 of 49

© 2014 OpenTravel Alliance www.opentravel.org

In addition to the requirements set forth in the above list of properties, the following normative rules
also apply to element type assignments:

1. If a property’s type assignment references an empty standard or contextual facet (see sections
8.9 and 8.10 for details), processors MUST interpret the element’s actual type assignment as that
of its next-higher non-empty facet. For example, if an element references the empty detail facet
of a business object, the actual type of the element will be interpreted to be the business
object’s summary facet (assuming the summary facet is not also empty). When this condition
exists in an OTM model, processors SHOULD issue a WARNING notification for the user.

2. If a top-level business object (not one of its facets) is directly referenced by an OTM element,
the reference MUST be interpreted to be valid for any of the business object’s facets (excluding
list and query facets).

3. If a top-level core object (not one of its facets) is directly referenced by an OTM element, the
reference MUST be interpreted to be valid for any of the core object’s facets (excluding list and
simple facets).

4. If an element’s type is considered to have an associated global XML element name, the ‘name’
property of the element MUST be ignored. The actual element name MUST match that of the
global XML element name. If the ‘name’ property and the global element name do not match,
processors SHOULD either automatically repair the nonconformance or issue a WARNING notification
for the user.

5. If an element’s owner extends an OTM term that declares another element with the same actual
name, the extending term’s owner MUST be interpreted as overriding the element from the
extended term.

6. Considering the following scenario:

 Term A2 extends term A1.

 Term A1 declares an element E1 whose assigned type is T1.

 Term A2 declares an element E2 whose assigned type is T2.
Element E2 MUST be interpreted as overriding or eclipsing E1 if term T2 extends T1.

The following OTM library excerpt provides a number of valid element declarations:

Example: Element Declarations
<Element name=”LocalCore_Summary” type=”LocalCore_Summary”

 mandatory=”false”/>

<Element name=”bar” type=”bar:BarSimpleType” mandatory=”true”>

 <Example context="air">BAR_VALUE</Equivalent>

</Element>

<Element name="Station" type="com:Station" mandatory=”false”

 isReference=”true” repeat=”99”>

 <Documentation>

 <Description>Station element description...</Description>

 </Documentation>

 <Equivalent context="database">LOCATION_TABLE:STATION</Equivalent>

</Element>

8.7 Indicators

Indicators in an OTM model represent a single named Boolean value that can be configured using the

Page 16 of 49

© 2014 OpenTravel Alliance www.opentravel.org

following properties:

Property Name Property Type Description

Name Name_XML The name of the Boolean indicator.

Publish As Element Boolean Indicates whether the indicator SHOULD be represented
as an attribute or element in a compiled schema for the
OTM library (default is false).

Documentation Documentation Optional indicator documentation provided by the
model designer.

Equivalent Equivalent List of zero or more context-sensitive equivalent
mappings for the indicator.

The following library snippet provides some variations of valid indicator declarations:

Example: Indicator Declarations
<Indicator name="fooInd" publishAsElement="false">

<Indicator name="fooElementInd" publishAsElement="true">

<Indicator name="barInd">

 <Documentation>

 <Description>Indicator documentation...</Description>

 </Documentation>

 <Equivalent context="database">INDICATOR_TABLE:BAR</Equivalent>

</Indicator>

8.8 Named Entities

Names entities are a general classification for any OTM term or component that is considered name-
addressable. Depending on the specific purpose and usage, name-addressable components can be
references as attribute or element types or type extensions (see section 10). A named entity can be
referenced from anywhere in an OTM model using its qualified name which is composed of a
namespace URI and a local name identifier. In all cases, the namespace of a named entity is identifies by
the namespace assignment of the library that owns the entity. The local name identifier is either
derived or explicitly assigned, depending on the specific type of entity to which the name applies.

When addressing a named entity, one of two possible formats MUST be utilized:

 Local Addressing: Under this scheme, only the local name identifier is specified. The namespace
is always assumed to be the same as that of the referencing term or entity.

 Qualified Addressing: Under this scheme, a qualified name is specified using a prefix and local
name identifier in the format “prefix:local-name”. The prefix MUST be a valid prefix
identifier for an imported namespace (see section 6.1.2) within the library of the referencing
term.

8.9 Standard Facets

Standard facets are a key underlying structure of most OTM models that act as containers for attributes,
elements, and indicators. The following properties are available for all standard facets:

Property Name Property Type Description

Page 17 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Property Name Property Type Description

Type Facet Type Indicates the type of the facet; available types for
standard facets are:

 ID

 Summary

 Detail

 Request

 Response

 Notification

Attributes Attribute A list of zero or more attribute declarations that are
owned by the facet.

Elements Element A list of zero or more element declarations that are
owned by the facet.

Indicators Indicator A list of zero or more indicator declarations that are
owned by the facet.

Documentation Documentation Optional facet-specific documentation provided by the
model designer.

Standard facets are named entities that MAY be used as type references for element declarations in an
OTM model. The local name identity of a standard facet is a function of its owner’s local name and the
facet type as “<owner-name>_<facet-type>”. For example the local name identity for the summary
facet of the core object “Foo” would be “Foo_Summary”.

The following OTM library excerpts provide a few examples of standard facet declarations. Notice that
the facet type is implied by the tag name of the facet declaration itself.

Example: Standard Facet Declarations
<Summary>

 <Attribute name=”foo” type=”LocalSimpleType” mandatory=”false”/>

 <Attribute name=”bar” type=”bar:BarSimpleType” mandatory=”true”/>

 <Element name=”LocalCore_Summary” type=”LocalCore_Summary”

 mandatory=”false”/>

</Summary>

<Detail>

 <Documentation>

 <Description>Detail facet documentation...</Description>

 </Documentation>

 <Element name=”bar” type=”bar:BarSimpleType” mandatory=”true”>

 <Example context="air">BAR_VALUE</Equivalent>

 </Element>

 <Indicator name="fooInd" publishAsElement="false">

 <Indicator name="fooElementInd" publishAsElement="true">

</Detail>

Page 18 of 49

© 2014 OpenTravel Alliance www.opentravel.org

<Request>

 <Documentation>

 <Description>Request documentation...</Description>

 </Documentation>

 <Attribute name="stationCode" type="xsd:string">

 <Documentation>

 <Description>Station code attribute description...</Description>

 </Documentation>

 <Example context="air">DFW</Equivalent>

 <Equivalent context="database">LOCATION_TABLE:STATION</Equivalent>

 </Attribute>

 <Element name="Station" type="com:Station" mandatory=”false”

 isReference=”true” repeat=”99”>

 <Documentation>

 <Description>Station element description...</Description>

 </Documentation>

 <Equivalent context="database">LOCATION_TABLE:STATION</Equivalent>

 </Element>

 <Indicator name="barInd">

 <Documentation>

 <Description>Indicator documentation...</Description>

 </Documentation>

 <Equivalent context="database">INDICATOR_TABLE:BAR</Equivalent>

 </Indicator>

</Request>

8.10 Contextual Facets

Contextual facets are extensions of standard facets. In addition to the properties and characteristics of
the standard facet specified in the previous section, contextual facets support labels and contextual
references.

Property Name Property Type Description

Type Facet Type Indicates the type of the facet. For contextual facets,
the only allowed types are:

 Query

 Custom

Context String Optional short identifier that associates this example
value with a particular context declaration.

Label String Optional label for the facet.

The local name identity of a contextual facet is a function of its owner’s name, its facet type, and its
context and label values. These rules vary slightly depending on the type of the contextual facet. The
following table provides a complete set of examples that demonstrate the type-specific naming
conventions that MUST apply for all contextual facets:

Facet Owner Name Facet Type Context Label Contextual Facet Name

FooTerm Custom <NULL> “Web” FooTerm_Web

FooTerm Custom “Air” <NULL> FooTerm_Air

FooTerm Custom “Air” “Web” FooTerm_Web

FooTerm Custom <NULL> <NULL> N/A (ERROR)
BarTerm Query <NULL> “Web” FooTerm_Query_Web

BarTerm Query “Air” <NULL> FooTerm_Query_Air

BarTerm Query “Air” “Web” FooTerm_Query_Web

BarTerm Query <NULL> <NULL> FooTerm_Query

Page 19 of 49

© 2014 OpenTravel Alliance www.opentravel.org

The following OTM library excerpts provide a few examples of contextual facet declarations.

Example: Contextual Facet Declaration Examples
<Query context=”profile” label=”FindByUserId”>

 <Attribute name=”userId” type=”xsd:string” mandatory=”true”/>

</Summary>

<Custom context=”” label=”Web”>

 <Documentation>

 <Description>Custom facet documentation...</Description>

 </Documentation>

 <Attribute name=”foo” type=”LocalSimpleType” mandatory=”false”/>

 <Attribute name=”bar” type=”bar:BarSimpleType” mandatory=”true”/>

 <Element name="Station" type="com:Station" mandatory=”false”

 isReference=”true” repeat=”99”>

 <Documentation>

 <Description>Station element description...</Description>

 </Documentation>

 <Equivalent context="database">LOCATION_TABLE:STATION</Equivalent>

 </Element>

 <Indicator name="fooInd" publishAsElement="false">

 <Indicator name="fooElementInd" publishAsElement="true">

</Custom>

8.11 Simple Facets

Simple facets specify the representation of a term or entity as a simple data type value. The following
properties are available for simple facet declarations:

Property Name Property Type Description

Type Name_Type The simple data type assignment of the facet.

Documentation Documentation Optional facet documentation provided by the model
designer.

Equivalent Equivalent List of zero or more context-sensitive equivalent
mappings for the facet.

Example Example List of zero or more context-sensitive example values for
the facet.

Simple facets are named entities whose local name identity is a function of its owner’s local name as
“<owner-name>_Simple”. For example the local name identity for the simple facet of the core object
“Foo” would be “Foo_Simple”.

The following snippets demonstrate several variations of simple facet declarations.

Example: Simple Facet Declarations
<Simple type="LocalSimpleType"/>

<Simple type="bar:BarSimpleType"/>

<Simple type="com:StationCode">

 <Documentation>

 <Description>Simple facet description...</Description>

 </Documentation>

 <Example context="air">DFW</Equivalent>

 <Equivalent context="database">LOCATION_TABLE:STATION</Equivalent>

</Simple>

Page 20 of 49

© 2014 OpenTravel Alliance www.opentravel.org

8.12 List Facets

List facets are always derived from other facet types, implying some repeating number of occurrences of
the underlying facet. Unlike the other facet types, list facets are not explicitly declared in an OTM
library. Instead, their existence is implied by the declaration of other facet types.

Like the other facet types, list facets are named entities. The local name identity of a list facet is derived
from that of its underlying facet by simply appending “List” to the name. For example the local name
identity for the summary list facet of the core object “Foo” would be “Foo_Summary_List”.

8.13 Aliases

Aliases are named entities that serve as a key component of the “controlled vocabulary” aspect of
OTA2.0 by defining alternative global names for a term or named entity. The sole property of an alias
definition is its name.

Any entity that supports the definition of aliases MAY be referenced using the alias name instead of its
primary assigned name. Aliases are always assigned to the same namespace as the term or entity that
declares them. The local name identifier for an alias is its name.

The following OTM library snippet shows an example of an alias declaration for a core object:

Example: Alias Declarations
<CoreObject name="CoreWithAliases" notExtendable="true">

 <Aliases>Alias1 Alias2 Alias3</Aliases>

 ...

</CoreObject>

<CoreObject name="CoreWithoutAliases" notExtendable="true">

 <Aliases/>

 ...

</CoreObject>

In some cases, the existence of an alias is implied by its relationship with other terms or named entities.
For example, the first core declaration in the above snippet would have three implied aliases for its
summary facet called “Alias1_Summary”, “Alias2_Summary”, and “Alias3_Summary”.

8.14 Roles

A role is used to define a purpose or usage characteristic of a term. For example, the term “Phone” can
be further qualified on a per-usage basis using one of the roles “Home”, “Work”, or “Cell”. Roles
support the following properties:

Property Name Property Type Description

Value String The name of the role.

Documentation Documentation Optional role documentation provided by the model
designer.

Page 21 of 49

© 2014 OpenTravel Alliance www.opentravel.org

The following OTM library excerpts demonstrate some samples of valid role declarations:

Example: Role Declarations
<Role value="Home"/>

<Role value="Work">

 <Documentation>

 <Description>Work phone description...</Description>

 </Documentation>

</Role>

8.15 Enumeration Literals

Enumeration literals define the possible assignable values for the open and closed enumerations that
declare them. Each enumeration literal supports the following properties:

Property Name Property Type Description

Literal Enum_Literal_Value The simple string that is assignable as a possible
value for the enumeration that declares the literal.

Equivalent Equivalent List of zero or more context-sensitive equivalent
mappings for the literal.

Documentation Documentation Optional role documentation provided by the model
designer.

The following snippets demonstrate several variations of enumeration literal declarations.

Example: Enumeration Literal Declarations
<Value literal="MON"/>

<Value literal="TUE">

 <Documentation>

 <Description>Day of the week for Tuesday</Description>

 </Documentation>

</Value>

<Value literal="WED">

 <Documentation>

 <Description>Day of the week for Wednesday</Description>

 </Documentation>

 <Equivalent context="database">WEDNESDAY</Equivalent>

</Value>

9 Open Travel Library Terms

This chapter provides definitions and examples of the primary terms of the OTM modeling language. All
of these terms extend, compose, or build upon the components defined in section 0 of this specification.
Unless otherwise specified all of the terms described in this chapter should be considered type-
addressable named entities.

9.1 Simple Types

Simple types are OTM terms that represent a simple data value (or list of values) that can be
represented as a string literal within an XML message. Simple type declarations support the following
properties:

Page 22 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Property Name Property Type Description

Name Name_XML The name of the simple type.

Type Name_Type Named entity reference for the base type definition
of the simple type. This reference MUST indicate a
term or other named entity that represents a simple
data type.

List Type Indicator Boolean Indicates whether this simple type represents a list of
values of the term indicated by the ‘type’ property.

Pattern String Regular expression pattern that constrains the set of
allowable values for the simple type. This property
only applies to terms that are based (directly or
indirectly) on the XML schema string type.

Max Length Non-Negative
Integer

Constrains the maximum length of possible string
values for the simple type. This property only applies
to terms that are based (directly or indirectly) on the
XML schema string type.

Min Length Non-Negative
Integer

Constrains the minimum length of possible string
values for the simple type. This property only applies
to terms that are based (directly or indirectly) on the
XML schema string type.

Fraction Digits Non-Negative
Integer

Constrains the maximum number of digits that MAY
appear to the right of the decimal point for base-10
numeric values. This property only applies to terms
that are based (directly or indirectly) on the XML
schema decimal type.

Total Digits Non-Negative
Integer

Constrains the maximum total number of digits that
in base-10 numeric values. This property only applies
to terms that are based (directly or indirectly) on the
XML schema decimal type.

Max Inclusive String Specifies the maximum inclusive value for values of
the simple type. The value of this property MUST be in
the value space of the base type reference.

Min Inclusive String Specifies the minimum inclusive value for values of
the simple type. The value of this property MUST be in
the value space of the base type reference.

Max Exclusive String Specifies the maximum exclusive value for values of
the simple type. The value of this property MUST be in
the value space of the base type reference.

Min Exclusive String Specifies the minimum exclusive value for values of
the simple type. The value of this property MUST be in
the value space of the base type reference.

Documentation Documentation Optional documentation provided by the model
designer.

Equivalent Equivalent List of zero or more context-sensitive equivalent
mappings for the simple type.

Example Example List of zero or more context-sensitive example values
for the simple type.

Page 23 of 49

© 2014 OpenTravel Alliance www.opentravel.org

The following OTM library excerpts provide several value simple type declarations:

Example: Simple Type Declarations
<Simple name="FooSimple" type="xsd:string">

<Simple name="AlphaNumericString" type="FooSimple"

 pattern=”[a-zA-Z0-9]+”>

 <Documentation>

 <Description>Alpha-numeric string value.</Description>

 </Documentation>

</Simple>

<Simple name="AlphaNumericStringList" type="AlphaNumericString"

 listTypeInd=”true”/>

<Simple name="Percentage" type="xsd:decimal" fractionDigits=”2”

 maxInclusive=”Z”>

 <Example context="default">25.50</Equivalent>

</Simple>

<Simple name="CapitalLetter" type="xsd:string" minInclusive=”A”

 maxInclusive=”Z”>

 <Equivalent context="IATA">ClassOfService</Equivalent>

</Simple>

<Simple name="Number1to10" type="xsd:int" minExclusive=”0”

 maxExclusive=”11”/>

9.2 Closed Enumerations

Closed enumerations are OTM terms that represent a closed collection of literal values. This means that
the only possible values that can be assigned to an attribute or element of a closed enumeration type
are the literal values defined in the enumeration itself (e.g. days of the week). Closed enumerations are
composed of the following properties:

Property Name Property Type Description

Name Name_XML The name of the enumeration term.

Values Enumeration
Literals

The list of literal declarations that define the
allowable values for the enumeration.

Documentation Documentation Optional documentation provided by the model
designer.

The following is an example of a valid closed enumeration declaration.

Example: Closed Enumeration Declaration
<Enumeration_Closed name=”DayOfWeek”>

 <Documentation>

 <Description>Days of the week.</Description>

 </Documentation>

 <Value literal="Monday"/>

 <Value literal="Tuesday"/>

 <Value literal="Wednesday"/>

 <Value literal="Thursday"/>

 <Value literal="Friday"/>

 <Value literal="Saturday"/>

 <Value literal="Sunday"/>

</Enumeration_Closed>

Page 24 of 49

© 2014 OpenTravel Alliance www.opentravel.org

9.3 Open Enumerations

Open enumerations are OTM terms that represent an open collection of literal values. This means that
the literals defined for an open enumeration are the most commonly used values, but do not comprise
the set of all possible literals (e.g. airport code or passenger type code).

Open enumeration properties are exactly the same as those of closed enumerations. The allowance of
undefined literal values is implied by the declaration of an open enumeration term, but the additional
value field itself is not directly represented in the OTM model.

The following is an example of a valid open enumeration declaration.

Example: Open Enumeration Declaration
<Enumeration_Open name=”PassengerTypeCode”>

 <Documentation>

 <Description>Passenger type code values.</Description>

 </Documentation>

 <Value literal="ADT"/>

 <Value literal="C11"/>

 <Value literal="INF"/>

 <Value literal="MIL"/>

 <Value literal="SRC"/>

 ...

</Enumeration_Open>

9.4 Values with Attributes

A Value with Attributes (VWA) is an OTM term that describes a simple data type with associated
attribute and/or indicator values. This definition implies that the VWA’s are complex data types, but
they are generally not governed by the naming and controlled vocabulary requirements that apply to
other complex type terms. VWA’s are typically used to define simple types whose values are further
qualified by other simple data values (see examples in this section).

VWA’s support the following properties:

Property Name Property Type Description

Name Name_XML The name of the VWA term.

Type Name_Type Named entity reference for the base type definition
of the VWA. This reference MUST indicate a term or
other named entity that represents a simple data
type or another VWA.

Processors MUST interpret an assigned base type of
‘ota:Empty’ as a VWA without an assigned base type.

Attributes Attribute A list of zero or more attribute declarations that are
owned by the VWA.

Indicators Indicator A list of zero or more indicator declarations that are
owned by the VWA.

Equivalent Equivalent List of zero or more context-sensitive equivalent
mappings for the base simple type of the VWA.

Example Example List of zero or more context-sensitive example values
for the base simple type of the VWA.

Page 25 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Property Name Property Type Description

Value
Documentation

Documentation Optional documentation for the base type
assignment for the VWA provided by the model
designer.

Documentation Documentation Optional documentation for the VWA provided by
the model designer.

The following OTM library excerpts provide several valid examples of VWA declarations.

Example: VWA Declarations
<ValueWithAttrs name="Amount" type="xsd:decimal">

 <Documentation>

 <Description>Documentation for the Amount VWA.</Description>

 </Documentation>

 <ValueDocumentation>

 <Description>Base type documentation...</Description>

 </ValueDocumentation>

 <Equivalent context="test">testenv/base-amount</Equivalent>

 <Example context="test">19.95</Example>

 <Attribute name="currency" type="ota:Code_Currnecy"/>

 <Indicator name="indicator1" publishAsElement="false"/>

</ValueWithAttrs>

<ValueWithAttrs name="VerifiedAmount" type="Amount">

 <Indicator name="verified"/>

</ValueWithAttrs>

<ValueWithAttrs name="SpecialConditionIndicators" type="ota:Empty">

 <Attribute name="wheelchairType" type="foo:WheelchairType"/>

 <Attribute name=”mealPrice” type=”VerifiedAmount”/>

 <Indicator name="wheelchairInd"/>

 <Indicator name="smokingInd"/>

 <Indicator name="mealPreferenceInd"/>

 <Indicator name="serviceAnimalInd"/>

</ValueWithAttrs>

9.5 Core Objects

Core objects are OTM terms that define complex data types that MAY also have simple type
representations. The naming of core objects is governed by the OTM rules for controlled vocabulary,
meaning that element with core object type assignments can only be assigned the name of the core
object itself or one of its aliases. Core objects are typically used to declare terms that contain structured
content, but do not possess a unique identity within any system or context.

The following properties are supported by core object declarations:

Property Name Property Type Description

Name Name_XML The name of the core object term.

Extension Name_Type Optional named entity reference to the core object
that is extended by the one being declared. If
present, the referenced entity MUST be another core
object declaration. See section 10 for more
information on OTM extensions and inheritance.

Aliases Alias List of zero or more aliases that define the allowable
names by which the core object MAY be referenced.

Page 26 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Property Name Property Type Description

Not Extendable Boolean Indicates whether or not the core object supports ad-
hoc extension points such as Extension Point Facets
(see section 9.9). This value does not indicate
whether or not values are allowed for the ‘extension’
property of a core object.

Simple Facet Simple Facet Indicates the simple representation of the core
object. If the core object does not have a simple
type representation, the simple facet SHOULD be blank
or reference the ‘ota:Empty’ type.

Summary Facet Standard Facet Facet that contains the summary-level attribute,
indicator, and element declarations for the core
object. The summary facet of a core object MUST
contain at least one member declaration.

Detail Facet Standard Facet Facet that contains the detail-level attribute,
indicator, and element declarations for the core
object. The detail facet of a core object MAY be
empty.

Equivalent Equivalent List of zero or more context-sensitive equivalent
mappings for the core object.

Documentation Documentation Optional documentation for the core object provided
by the model designer.

Processors MUST interpret the facet hierarchy of a core object such that the detail facet is considered an
extension of the summary facet contents.

The following OTM snippets provide several valid examples of core object declarations.

Example: Core Object Declarations
<CoreObject name="PersonName" notExtendable="true">

 <Aliases/>

 <Simple type="ota:Empty"/>

 <Summary>

 <Attribute name="firstName" type="xsd:string"/>

 <Attribute name="middleName" type="xsd:string"/>

 <Attribute name="lastName" type="xsd:string"/>

 </Summary>

 <Detail/>

</CoreObject>

<CoreObject name="PhoneNumber" notExtendable="false">

 <Aliases>Phone Telephone</Aliases>

 <Simple type="xsd:string"/>

 <Summary>

 <Attribute name="cityCode" type="foo:NumericString"/>

 <Attribute name="prefix" type="foo:NumericString"/>

 <Attribute name="lineNumber" type="foo:NumericString"/>

 <Indicator name="doNotCallInd"/>

 </Summary>

 <Detail/>

</CoreObject>

Page 27 of 49

© 2014 OpenTravel Alliance www.opentravel.org

<CoreObject name="InternationalPhoneNumber" notExtendable="false">

 <Extension extends="PhoneNumber"/>

 <Aliases/>

 <Simple type="xsd:string"/>

 <Summary/>

 <Detail>

 <Attribute name="countryCode" type="foo:NumericString"/>

 </Detail>

</CoreObject>

<CoreObject name="Address" notExtendable="false">

 <Aliases/>

 <Simple type="xsd:string"/>

 <Summary>

 <Attribute name="street1" type="xsd:string"/>

 <Attribute name="street2" type="xsd:string"/>

 <Attribute name="city" type="xsd:string"/>

 <Attribute name="stateOrProvince" type="Enum_StateOrProvince"/>

 <Attribute name="postalCode" type="xsd:string"/>

 </Summary>

 <Detail>

 <Attribute name="country" type="iso:Code_Country"/>

 <Attribute name="attentionTo" type="xsd:string"/>

 </Detail>

 <Roles>

 <Role value="Home"/>

 <Role value="Work"/>

 <Role value="Shipping"/>

 <Role value="Billing"/>

 </Roles>

</CoreObject>

9.6 Business Objects

Business objects are OTM terms that define complex data types that exist as clearly defined business
concepts that can be uniquely identified within an enterprise or business domain. Like core objects,
business objects are governed by the OTM rules for controlled vocabulary, meaning that element with
core object type assignments can only be assigned the name of the business object itself or one of its
aliases.

The following properties are supported by business object declarations:

Property Name Property Type Description

Name Name_XML The name of the business object term.

Extension Name_Type Optional named entity reference to the business
object that is extended by the one being declared. If
present, the referenced entity MUST be another
business object declaration. See section 10 for more
information on OTM extensions and inheritance.

Aliases Alias List of zero or more aliases that define the allowable
names by which the business object MAY be
referenced.

Not Extendable Boolean Indicates whether or not the business object
supports ad-hoc extension points such as Extension
Point Facets (see section 9.9). This value does not
indicate whether or not values are allowed for the
‘extension’ property of a business object.

Page 28 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Property Name Property Type Description

ID Facet Standard Facet Facet that defines the unique identity of the business
object using the combination of its attribute,
indicator, and element declarations. The ID facet of
a business object MUST contain at least one attribute
or element declaration.

Summary Facet Standard Facet Facet that contains the summary-level attribute,
indicator, and element declarations for the business
object. The summary facet of a business object MAY
be empty.

Detail Facet Standard Facet Facet that contains the detail-level attribute,
indicator, and element declarations for the business
object. The detail facet of a business object MAY be
empty.

Custom Facet Contextual Facet Zero or more contextual facets that define some
number of attribute, indicator, and element
declarations in addition to the ones defined in the
summary facet of the business object.

Query Facet Contextual Facet Zero or more contextual facets, each of which
defines a search function for the business object.

Equivalent Equivalent List of zero or more context-sensitive equivalent
mappings for the business object.

Documentation Documentation Optional documentation for the business object
provided by the model designer.

Processors MUST interpret facet hierarchy of a business object in the following manner:

 The summary facet MUST be interpreted as an extension of the ID facet.

 The detail facet MUST be interpreted as an extension of the summary facet.

 Any custom facets MUST be interpreted as extensions of the summary facet.

 Any query facets MUST be interpreted as not extending any other facet.

The above statements that imply an inheritance relationship mean that that the full list of declarations
for the extending facet MUST include all members declared and inherited by the extended facet. For
ordering purposes, all items inherited or declared by the extended facet MUST be interpreted to occur
prior to any of the declarations inherited or declared by the extending facet.

Page 29 of 49

© 2014 OpenTravel Alliance www.opentravel.org

The OTM excerpts below provide several valid examples of business object declarations.

Example: Business Object Declarations
<BusinessObject name="Profile" notExtendable="false">

 <Aliases>Customer Traveler Passenger</Aliases>

 <ID>

 <Attribute name="id" type="xsd:ID" mandatory=”false”/>

 <Element name="profileId" type="com:GUID" mandatory=”true”/>

 </ID>

 <Summary>

 <Element name=”name” type=”com:PersonName”/>

 <Element name=”homeAddress” type=”com:Address”/>

 <Element name=”phoneNumbers” type=”com:Phone_Summary_List”/>

 </Sumary>

 <Detail>

 <Indicator name=”loyaltyMember”/>

 <Element name=”loyaltyAccount” type=”com:AccountNumber”

 repeat=”99”/>

 </Detail>

 <Query context=”default” label=”FindByProfileId”/>

 <Element name="profileId" type="com:GUID" mandatory=”true”/>

 </Query>

</BusinessObject>

<BusinessObject name="CompanyXYZProfile" notExtendable="true">

 <Extension extends="Profile"/>

 <Aliases>LoyaltyInfo</Aliases>

 <ID/>

 <Summary/>

 <Detail/>

 <Query context=”xyz” label=”FindByLastName”/>

 <Element name=”seatingPreference” type=”xyz:SeatPreference”/>

 </Query>

 <Custom context=”xyz” label=”Web”/>

 <Element name=”seatingPreference” type=”xyz:SeatPreference”/>

 </Custom>

 <Custom context=”xyz” label=”CallCenter”/>

 <Element name=”billingAddress” type=”com:Address”/>

 <Element name=”seatingPreference” type=”xyz:SeatPreference”/>

 </Custom>

</BusinessObject>

9.7 Operations

Unlike the other components described in this section, operations are not first-class terms that are
defined within an OTM library. Instead, operations are declared by services (see section 9.8) in order to
define the functional actions of an OTM model. In spite of the fact that they are not first-class terms,
operations are named entities that are governed by the OTM rules for controlled vocabulary.

OTM operations support the following properties:

Page 30 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Property Name Property Type Description

Name Name_XML The name of the operation.

Extension Name_Type Optional named entity reference to the operation
that is extended by the one being declared. If
present, the referenced entity MUST be another
operation declaration. See section 10 for more
information on OTM extensions and inheritance.

Not Extendable Boolean Indicates whether or not the operation supports ad-
hoc extension points such as Extension Point Facets
(see section 9.9). This value does not indicate
whether or not values are allowed for the ‘extension’
property of an operation.

Request Facet Standard Facet Facet that defines the request for the operation as a
combination of its attribute, indicator, and element
declarations. If the request facet of an operation is
empty, processors MUST be assumed the request to
be undefined.

Response Facet Standard Facet Facet that defines the response for the operation as
a combination of its attribute, indicator, and element
declarations. If the response facet of an operation is
empty, processors MUST be assumed the response to
be undefined.

Notification Facet Standard Facet Facet that defines a notification element for the
operation as a combination of its attribute, indicator,
and element declarations. If the notification facet of
an operation is empty, processors MUST be assumed
the notification to be undefined.

Equivalent Equivalent List of zero or more context-sensitive equivalent
mappings for the operation.

Documentation Documentation Optional documentation for the operation provided
by the model designer.

The following OTM library snippets provide a number of valid examples of operation declarations.

Example: Operation Declarations
<Operation Name="GetProfile" notExtendable="false">

 <Request>

 <Element name="ProfileQueryFindByProfileId" mandatory=”true”

 type="Profile_Query_FindByProfileId"/>

 </Request>

 <Response>

 <Element name="ProfileDetail" repeat="0" type="Profile_Detail"/>

 </Response>

 <Notification/>

</Operation>

Page 31 of 49

© 2014 OpenTravel Alliance www.opentravel.org

<Operation Name="FindXYZProfile" notExtendable="false">

 <Request>

 <Element name="CompanyXYZProfileQueryFindByLastName"

 type="CompanyXYZProfile_Query_FindByLastName"

 mandatory=”true”/>

 </Request>

 <Response>

 <Element name="CompanyXYZProfileDetail" repeat="0"

 type="CompanyXYZProfile_Detail"/>

 </Response>

 <Notification/>

</Operation>

9.8 Services

Service declarations act as containers for the OTM operations described in the previous section. Unlike
the other OTM library terms, only one service can be declared within a user-defined library. Another
difference is that services are generally not considered to be name-addressable entities that can be
referenced by other terms.

Service declarations support the following properties:

Property Name Property Type Description

Name Name_XML The name of the service.

Operations Operation One or more operation declarations for the service.

Equivalent Equivalent List of zero or more context-sensitive equivalent
mappings for the service.

Documentation Documentation Optional documentation for the service provided by
the model designer.

When services are defined in multiple minor versions of an OTM library’s major version chain (e.g. 1.0,
1.1, 1.2, etc.), the later version(s) of the service SHOULD be considered to extend the prior service(s)
defined in earlier versions of the OTM library. For this reason, all service definitions within a library’s
major version chain MUST be assigned the same name.

For the operation declarations within a service, any operations with the same name as one declared in
earlier versions of a service SHOULD be interpreted as overriding the earlier version of the operation. New
operations whose names do not match those in prior versions of the service SHOULD be considered
additive to the service.

The following OTM snippet provides a valid service declaration example:

Example: Service Declarations
<Service name="ProfileService">

 <Documentation>

 <Description>Profile serivce description...</Description>

 </Documentation>

 <Operation Name="GetProfile" notExtendable="false">

 <Request>

 <Element name="ProfileQueryFindByProfileId" mandatory=”true”

 type="Profile_Query_FindByProfileId"/>

 </Request>

 <Response>

 <Element name="ProfileDetail" repeat="0" type="Profile_Detail"/>

 </Response>

 <Notification/>

 </Operation>

Page 32 of 49

© 2014 OpenTravel Alliance www.opentravel.org

 ...

 <Operation Name="CreateProfile" notExtendable="false">

 <Request>

 <Element name="ProfileDetail" mandatory=”true”

 type="Profile_Detail"/>

 </Request>

 <Response>

 <Element name="ProfileID" mandatory=”true” type="Profile_ID"/>

 </Response>

 <Notification/>

 </Operation>

</Service>

9.9 Extension Point Facets

Extension point facets are OTM terms that are not intended to stand alone as independent named
entities. Instead, extension point facets supply additive content for existing terms without directly
modifying those terms. This capability can be useful for implementing small changes to message
structures without requiring a change for library terms that have been promoted to ‘Final’ status and
are locked for editing.

Extension point facets support the following properties:

Property Name Property Type Description

Extension Name_Type Optional named entity reference to the operation
that is extended by the one being declared. If
present, the referenced entity MUST be another
operation declaration. See section 10 for more
information on OTM extensions and inheritance.

Attributes Attribute A list of zero or more attribute declarations that are
owned by the extension point facet.

Elements Element A list of zero or more element declarations that are
owned by the extension point facet.

Indicators Indicator A list of zero or more indicator declarations that are
owned by the facet.

Documentation Documentation Optional documentation for the extension point
facet provided by the model designer.

Extension point facets identify the standard or contextual facets they modify through their ‘extension’
property. For this reason, extension point facets are not considered named entities that can be
referenced as independent OTM terms.

The following OTM library excerpts provide some valid examples of extension point facet declaration:

Example: Extension Point Facet Declarations
<ExtensionPointFacet>

 <Documentation>

 <Description>Extension point description...</Description>

 </Documentation>

 <Attribute name="xyzOfferId" type="foo:GUID"/>

 <Attribute name="productCategory" type="xsd:Enum_ProductCategory"/>

 <Indicator name="customOfferInd"/>

 <Extension extends="xyz:PricedOffer_Summary"/>

</ExtensionPointFacet>

Page 33 of 49

© 2014 OpenTravel Alliance www.opentravel.org

<ExtensionPointFacet>

 <Element name="OfferInfoDetail" repeat="0"

 type="xyz:OfferInfo_Detail"/>

 <Extension extends="xyz:PricedOffer_Detail"/>

</ExtensionPointFacet>

9.10 XSD Schema Terms

XSD schema terms are OTM terms that represent type declarations from non-OTM XML schemas. There
are three principle types of XSD schema types:

 XSD Simple Type (declared via “<xs:simpleType>”)

 XSD Complex Type (declared via “<xs:complexType>”)

 XSD Element (declared via a “<xs:element>” as a global XML element definition)

As named entities, all XSD schema types are eligible to be assigned as type references for OTM
elements. Because it represents a simple data type, XSD simple type declarations can also be assigned
as type references for attributes, OTM simple types, VWA value types, and simple facets for core
objects.

The only OTM model property that MUST be present for an XSD schema term is its local name. There is
no strict requirement for processors to support visibility into the definition and structure of legacy XSD
terms as long as they can be referenced by other terms in the OTM model.

10 Extensions and Inheritance of Terms

OTM model constructs support two principle mechanisms that support inheritance: extensions and facet
hierarchies. Several of the previous sections of this document have already discussed these concepts in
a very general manner. The purpose of this chapter is to describe these topics in detail, including their
specific effects on the inheritance of declarations between terms and facets.

Extensions:

The extension of terms exists when one term explicitly references another term of the same type via its
Extension property. Processors MUST handle extensions of terms according to the following rules:

1. For any given term “B” that extends another term “A”, both terms MUST be of the same general
type (e.g. core object, business object, operation, etc.) in order for the extension to be valid.

2. When considering the inheritance between the facets of these terms, processors MUST interpret
the inheritance of member attribute, indicator, and element declarations in the following
manner:

a. A facet of term “B” MUST be interpreted to inherit all of the member declarations from
the corresponding term “A” facet of the same type (see 2(c) and 2(d) below).

b. All inherited member declarations from the term “A” facet MUST be interpreted to occur
in sequence ahead of those declared directly in the term “B” facet.

c. Standard facets from terms “A” and “B” are considered to be the same type if their facet
type properties match.

Page 34 of 49

© 2014 OpenTravel Alliance www.opentravel.org

d. Contextual facets from terms “A” and “B” are considered to be the same type if their
facet type, context, and label properties match.

Facet Hierarchies:

Unlike extension relationships that are explicitly defined by the model designer, facet hierarchies are
implied by the nature of the term that owns the facets. For example, section 9.6 defines the facet
hierarchy of a business object such that the summary facet extends the ID facet, the detail facet extends
the summary facet, etc.

Processors MUST interpret the inheritance rules for facet hierarchies as follows:

1. Consider an OTM term with facets “F1” and “F2” such that “F2” is lower in the facet hierarchy
than “F1”.

2. Facet “F2” MUST be interpreted to inherit all of the member declarations (attributes, indicators,
and elements) from facet “F1”.

3. All of the declarations inherited from “F1” MUST be interpreted to occur in sequence ahead of
those declared directly by the “F2” facet.

When determining the sequence of inherited terms, processors MUST interpret the declarations inherited
from an extension relationship as taking precedence over the inheritance rules of the facet hierarchy. In
the case of a core object’s detail facet, for example, this means that all members inherited or declared
by the summary facet MUST be interpreted to occur prior to any of the declarations inherited or declared
by the detail facet.

11 Versioning of Libraries and Terms

The OTM modeling language is somewhat unique in that versioning strategies are incorporated into the
structure of the language itself. This allows OTM to effectively represent, not only the terms declared in
a model, but the change history of those terms. To this end, three principle types of version changes are
supported: major versions, minor versions, and patches.

11.1 Version Schemes

While all OTM models MUST follow the same basic approach and structure when managing versioned
components, some level of flexibility is allowed in the schemes that are used for version numbering.
Generally, speaking, all version schemes MUST support the unique identification of major, minor, and
patch-level version numbers.

At a minimum, version schemes that are implemented by processors MUST cover the following functions:

1. Encode a version identifier into the path of a base namespace URI

2. Decode a version identifier from a library’s target namespace URI

3. Decode the base namespace URI from a library’s target namespace URI

4. Construct a version-specific namespace prefix from a library’s target namespace URI

5. Decode the major, minor, and patch components from a version identifier string (e.g. the major
version component of “1.2.3” would be “1”)

Page 35 of 49

© 2014 OpenTravel Alliance www.opentravel.org

6. Identify the default version identifier to be used for newly-created libraries

7. Identify the major-version namespace associated with a library’s target namespace URI (e.g. the
major-version namespace for “http://foo.com/v1_2_3” could be “http://foo.com/v1”)

8. Identify the possible namespaces associated with the major version chain of a library.

a. The major version chain of any version is a sequence of version numbers (or version-
encoded namespace URI’s) that span from the current version to all prior versions up to
and including the original major version of the chain.

b. Example: The major version chain for “http://foo.com/v3_2_2” would include the
following namespace URI’s:

http://foo.com/v3_2_2

http://foo.com/v3_2_1

http://foo.com/v3_2_0

http://foo.com/v3_1_0

http://foo.com/v3_0_0

9. Implement the logic for incrementing and decrementing version identifiers at the major, minor,
and patch version levels

10. Calculate the default filename hint for a library as a function of its target namespace, version
identifier, and library name

At a minimum, processors MUST implement a default version scheme named “OTA2” that follows a
standard numeric numbering pattern starting (by default) with version “1.0.0” for new libraries. In this
default version scheme, the first digit indicates the major version number, the second digit indicates the
minor version number, and the final digit indicates the patch level of a library.

11.2 Versioning of OTM Libraries

The versioning of user-defined OTM libraries is relatively straightforward. The version of a library is
identified by its encoding into the target namespace URI (according to its version scheme – typically as
the last component of the URI path). Since libraries act as containers for the terms and named entities
of an OTM model, the version of each term is inherited from the library that contains it. Unlike user-
defined libraries, legacy schemas are not required to maintain a version identifier as part of its target
namespace URI.

When dealing with minor and patch versions, user-defined libraries have implied dependencies on the
previous minor/patch version in the major version chain (see section 11.1, item #8) from which they
were created.

The terms that can be defined in an OTM library are governed by the following rules, depending on its
version type:

Major Versions

1. Any new term can be defined

2. If a prior version of the term existed, its content and structure can be modified in any way

Minor Versions

1. Any new term can be defined

Page 36 of 49

© 2014 OpenTravel Alliance www.opentravel.org

2. Existing versioned terms (see section 11.3) can only be modified by adding indicators, optional
attributes, or optional element declarations

3. Non-versioned terms cannot be modified in a minor version library

Patch Versions

1. Only new simple types, open/closed enumerations, and extension point facets can be defined

2. Extension point facets are only allowed to reference (extend) standard or contextual facets
declared in a prior major or minor version of the patch library’s major version chain

11.3 Versioning of OTM Terms

Although user-defined libraries can contain any type of term (within the constraints described in the
previous section), only four of them are recognized as versioned OTM terms:

 Values with Attributes (VWA)

 Core Object

 Business Object

 Operation

Since none of these terms are allowed in patch version libraries, each of these terms only supports
major and minor version levels. Patches for these terms and their facets are defined using extension
point facets that are declared in a patch library version.

When a new minor version of a versioned term is declared, the previous version of the term is
referenced via the new version’s extension property. Since VWA’s do not support extensions, the
previous version of a VWA is referenced via its type property. For one term to be considered a later
minor version of another term, all of the following conditions MUST be met:

1. The terms must be of the same type (business object, core, etc.) and have the same name

2. The terms MUST be declared in different libraries, and both libraries must have the same name,
version scheme, and base namespace URI

3. The version of the extended term’s library MUST be lower than that of the extending term’s
library version, but both libraries MUST belong to the same major version chain

Page 37 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Appendix A: Glossary

SIMPLE DATA TYPE – A type whose value may be expressed as a single lexical string value in an XML
document with no associated attributes or child element tags

COMPLEX DATA TYPE – A type composed as a structure of simple values and/or nested complex type values

CONTEXT-SENSITIVE – Any term, named entity, or declaration that is associated with a context declaration in
an OTM library

FACET HIERARCHY – An implied inheritance structure between the various types of facets that exist within
an OTM term

VWA – Common abbreviation for an OTM Value with Attributes term

BASE NAMESPACE – A namespace URI that does not contain an encoded version identifier

Page 38 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Appendix B: Naming Conventions for XML Types and Elements

Although the OTM language specification is not specifically aligned with the XML schema language, the
global naming conventions used in the language are closely aligned with the naming standards used
when generating XML schemas. The following table provides a summary of the naming standards used
for global type and element naming in XML schemas.

Term Name
[Type]

Facet
Type

Context Label Global XML
Element Name

Global XML Type Name

MySimple
[Simple]

N/A N/A N/A N/A MySimple

MyEnum
[Closed Enum]

N/A N/A N/A N/A MyEnum

MyEnum
[Open Enum]

N/A N/A N/A N/A MyEnum

MyVWA [VWA] N/A N/A N/A N/A MyVWA

MyCore
[Core Object]

N/A N/A N/A MyCoreSubGrp N/A

MyCore
[Core Object]

Simple N/A N/A N/A MyCore_Simple

MyCore
[Core Object]

Summary N/A N/A MyCore [sub]
MyCoreSummary
[ns]

MyCore_Summary

MyCore
[Core Object]

Detail N/A N/A MyCoreDetail MyCore_Detail

MyCore
[Core Object]

Summary
List

N/A N/A MyCore [sub]
MyCoreSummary
[ns]

MyCore_Summary

MyCore
[Core Object]

Detail
List

N/A N/A MyCoreDetail MyCore_Detail

MyBO
[Business Object]

N/A N/A N/A MyBOSubGrp N/A

MyBO
[Business Object]

ID N/A N/A MyBOID [sub]
MyBOIdentity [ns]

MyBO_ID

MyBO
[Business Object]

Summary N/A N/A MyBO [sub]
MyBOSummary
[ns]

MyBO_Summary

MyBO
[Business Object]

Detail N/A N/A MyBODetail MyBO_Detail

MyBO
[Business Object]

Custom N/A Foo MyBOFoo MyBO_Foo

MyBO
[Business Object]

Custom Bar N/A MyBOBar MyBO_Bar

MyBO
[Business Object]

Custom Bar Foo MyBOBarFoo MyBO_Bar_Foo

MyBO
[Business Object]

Query N/A N/A MyBOQuery MyBO_Query

MyBO
[Business Object]

Query N/A Foo MyBOQueryFoo MyBO_Query_Foo

Page 39 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Term Name
[Type]

Facet
Type

Context Label Global XML
Element Name

Global XML Type Name

MyBO
[Business Object]

Query Bar N/A MyBOQueryBar MyBO_Query_Bar

MyBO
[Business Object]

Query Bar Foo MyBOQueryBarFoo MyBO_Query_Bar_Foo

MyOp [Operation] Request N/A N/A MyOpRQ MyOp_RQ

MyOp [Operation] Response N/A N/A MyOpRS MyOp_RS

MyOp [Operation] Notif. N/A N/A MyOpNotif MyOp_Notif

[sub] = Substitutable Element
[ns] = Non-Substitutable Element

Page 40 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Appendix C: Semantic Validation Rules for OTM Models

The tables provided in this appendix specify the normative semantic validation rules for each OTM
component and term. In a number of cases, the same rule description applies to many different
component types. To avoid duplication, these common rules have been consolidated in the “Common
Validation Rules” section and are referenced by their Rule ID index in each of the applicable sections
that follow.

Common Validation Rules
Rule ID (Index) Validation Rule Description

REQUIRED VALUE The property value is required. In the case of string values, empty strings are
not allowed.

VALID NAME FORMAT The format of the name, type reference, or other string value MUST conform
to that of the simple type specified for the property in sections 6 – 9 of this
document.

VALID NAME
REFERENCE

The name MUST be formatted as “localname” or

“prefix:localname”; the omission of the prefix indicates that the
namespace is the same as that of the referencing term. In addition to being
a properly formatted name, the referenced named entity MUST exist within
the OTM model. In the case of extension reference, the extending entity
MUST be the same type of term as the extended entity (e.g. core objects can
only extend other cores).

NON-DEPRECATED
TYPE REFERENCE

The referenced named entity type SHOULD not be deprecated. Deprecation is
determined by the existence of a “Deprecation” element in the referenced
entity’s documentation element.

DUPLICATE
DECLARATIONS NOT
ALLOWED

The name or identity of a component or term declaration within its
immediate owner/parent MUST NOT have a sibling component or term
declared with the same name or identity.

DUPLICATE GLOBAL
NAMES NOT
ALLOWED

The qualified name of a term or named entity MUST be unique to the entire
OTM model. Versioned terms are allowed to have duplicate names as long
as they are considered valid minor versions of one another (see section
11.3).

CIRCULAR SIMPLE
TYPE ASSIGNMENTS
NOT ALLOWED

Type assignments that create direct or indirect circular references between
simple type declarations are not allowed.

CIRCULAR
EXTENSIONS NOT
ALLOWED

Extension assignments that create direct or indirect circular references
between terms are not allowed.

VALID MINOR
VERSION EXTENSION

If a versioned entity extends another entity with the same name and same
base namespace assignment, the version identifier of the extending entity
MUST be later than the version identifier of the extended entity.

MAXIMUM ALLOWED
LENGTH

The length of a string value MUST NOT exceed a specified maximum length.

VALID CONTEXT
REFERENCE

The context ID reference MUST match the ID of a context declaration defined
in the referring component’s owning library.

Page 41 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Library Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Namespace ERROR REQUIRED VALUE

 MUST be a qualified (non-relative) namespace URI in URL format

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

Version Scheme ERROR REQUIRED VALUE

 MUST be a valid version scheme identifier that is supported by the
processor implementing this specification; all processors MUST
support the “OTA2” version scheme

Prefix ERROR REQUIRED VALUE

Include ERROR Namespace of the included library MUST match the namespace of
the library doing the include

Import ERROR Namespace of the import declaration MUST NOT match the
namespace of the library doing the import

 Namespace of the imported library MUST match the namespace of
the import declaration

 The prefix associated with each imported namespace within a
library must be unique the library in which the imports are
declared

Terms ERROR The qualified name (namespace + name) of each named entity in a
library MUST be unique within the entirety of the OTM model

 Only new simple types, open/closed enumerations, and extension
point facets can be defined in patch library versions

Service ERROR Duplicate service names MUST NOT be declared within different
libraries assigned to the same namespace

OTM Project Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Namespace /
Project ID

ERROR REQUIRED VALUE

Name ERROR REQUIRED VALUE

Unmanaged
Project Items

ERROR The location of an unmanaged project item (library or schema)
MUST be a valid absolute file path or a relative path from the folder
where the referencing project file is stored.

1.1

Page 42 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Property Finding
Type

Validation Rule Descriptions (or Index)

Managed Project
Items

ERROR All fields that describe the ID the repository and the library
resource within that repository MUST be specified

 The repository that owns the managed resource MUST be accessible
by the processor used to load the project

Context Declaration Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Context ID ERROR REQUIRED VALUE

 DUPLICATE DECLARATION NOT ALLOWED

Application
Context

ERROR REQUIRED VALUE

 DUPLICATE DECLARATION NOT ALLOWED

Documentation Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Description ERROR MAXIMUM ALLOWED LENGTH = 10,000

Implementer ERROR MAXIMUM ALLOWED LENGTH = 10,000

Deprecated ERROR MAXIMUM ALLOWED LENGTH = 10,000

Reference ERROR MUST be a valid URI string value

More Info ERROR MAXIMUM ALLOWED LENGTH = 10,000

Other Doc ERROR MAXIMUM ALLOWED LENGTH = 10,000

 VALID CONTEXT REFERENCE

Equivalent Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Context ERROR REQUIRED VALUE

 DUPLICATE DECLARATION NOT ALLOWED

 VALID CONTEXT REFERENCE

Value WARNING REQUIRED VALUE

Example Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Context ERROR REQUIRED VALUE

 DUPLICATE DECLARATION NOT ALLOWED

 VALID CONTEXT REFERENCE

Value WARNING MUST be valid according to the constraints of the simple type to
which the example applies

Page 43 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Attribute Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

 DUPLICATE DECLARATIONS NOT ALLOWED

Type ERROR REQUIRED VALUE

 VALID NAME REFERENCE

 Allowable type references are: Simple, Closed Enumeration, Simple
Facet, XSD Simple Type.

 VWA’s and Open Enumerations are allowed type references if the
owner of the attribute is a VWA.

 Core objects are allowed type references if the core declares a
non-empty simple facet.

 List facet references are allowed if its underlying facet is a simple
facet and the core object declares at least one role.

Type WARNING NON-DEPRECATED TYPE REFERENCE

 Warn for Boolean attributes that SHOULD be declared as indicators

 Warn on usage of ‘xsd:IDREF’ or ‘xsd:IDREFS’; SHOULD be
declared as elements with a ‘Reference’ property value set to true.

Mandatory ERROR Attributes defined for minor versions of a term MUST be optional.

Element Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

 DUPLICATE DECLARATIONS NOT ALLOWED

Name WARNING Elements whose types have an associated global element name
(see Appendix B) SHOULD be assigned that global element name
(warn on name mismatch).

 For elements whose Reference property is true and whose types
are not associated with a global element name, the element name
SHOULD end with “Ref”.

Page 44 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Property Finding
Type

Validation Rule Descriptions (or Index)

Type ERROR REQUIRED VALUE

 VALID NAME REFERENCE

 Allowable type references are: Simple, Closed Enumeration, Open
Enumeration, VWA, Core Object, Business Object, Standard Facet,
Contextual Facet, Simple Facet, List Facet, Alias, Role Enumeration,
XSD Simple Type, XSD Complex Type, XSD Element

 Element type assignments cannot create circular references in
which all of the elements in the cycle are mandatory

 Multiple elements that belong to the same inheritance hierarchy
cannot be defined within the scope of its owning term (i.e. core or
business object). The inheritance hierarchy includes a term and all
of its facets, as well as any extended terms in the hierarchy. For
the purposes of this rule, the inheritance hierarchy does not
include aliases or their associated named entities.

 For elements whose Reference property is true, the assigned type
MUST be a complex type that declares an ‘xsd:ID’ attribute or
element.

 Elements MUST NOT reference the list facet of a core object unless
the core object defines at least one role

Type WARNING NON-DEPRECATED TYPE REFERENCE

 Warn for Boolean elements that SHOULD be declared as indicators

 Warn on usage of ‘xsd:IDREF’ or ‘xsd:IDREFS’; SHOULD be
declared as elements with a ‘Reference’ property value set to true

 Warn if the assigned type is a standard or contextual facet with no
assigned or inherited member declarations

Mandatory ERROR Elements defined for minor versions of a term MUST be optional

Repeat WARNING If the assigned type of an element is a list facet, the repeat value
SHOULD be equal to the number of roles defined for the core object
that owns the list facet.

Examples WARNING Warn if examples are provided for an element whose assigned
type is a complex data type

Indicator Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

 DUPLICATE DECLARATIONS NOT ALLOWED

Publish As
Element

ERROR MUST be false if the owner of the indicator is a VWA

Page 45 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Standard Facet Validation Rules

Contextual Facet Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Facet Identity
(owner + type +
context + label)

ERROR DUPLICATE GLOBAL NAMES NOT ALLOWED

Facet Type ERROR The facet type property MUST be valid for the owner of the facet
declaration

Attributes &
Elements

ERROR Only one attribute or element declared or inherited by a facet MAY
be assigned the type ‘xsd:ID’

Simple Facet Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Facet Identity
(owner + type)

ERROR DUPLICATE GLOBAL NAMES NOT ALLOWED

Type ERROR VALID NAME REFERENCE

 CIRCULAR SIMPLE TYPE ASSIGNMENTS NOT ALLOWED

 Allowable type references follow the same rules as attribute
declarations

 The simple facet for a later minor version of a core object cannot
change its simple type assignment

Type WARNING NON-DEPRECATED TYPE REFERENCE

Role Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

 DUPLICATE DECLARATIONS NOT ALLOWED

Property Finding
Type

Validation Rule Descriptions (or Index)

Facet Identity
(owner + type)

ERROR DUPLICATE GLOBAL NAMES NOT ALLOWED

Facet Type ERROR The facet type property MUST be valid for the owner of the facet
declaration

Attributes &
Elements

ERROR Only one attribute or element declared or inherited by a facet MAY

be assigned the type ‘xsd:ID’

Page 46 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Enumeration Literal Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

 DUPLICATE DECLARATIONS NOT ALLOWED

Simple Type Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

 DUPLICATE GLOBAL NAMES NOT ALLOWED

Type ERROR REQUIRED VALUE

 VALID NAME REFERENCE

 Allowable type references are: Simple and XSD Simple Type

 CIRCULAR SIMPLE TYPE ASSIGNMENTS NOT ALLOWED

Type WARNING NON-DEPRECATED TYPE REFERENCE

List Type Indicator ERROR A simple type MUST NOT be declared as a list if its type assignment
is itself a simple list type

Pattern ERROR MUST be a valid regular expression

Min Length ERROR If present, MUST be greater than or equal to zero

Max Length ERROR If present, MUST be greater than or equal to the Min Length value
(or zero if a Min Length value is not defined)

Min Inclusive ERROR If present, MUST be greater than or equal to zero

Max Inclusive ERROR If present, MUST be greater than or equal to the Min Inclusive
value (or zero if a Min Inclusive value is not defined)

Min Exclusive ERROR If present, MUST be greater than or equal to zero

Max Exclusive ERROR If present, MUST be greater than or equal to the Min Exclusive
value (or zero if a Min Exclusive value is not defined)

Min/Max Length,
Min/Max Inclusive,
Min/Max Exclusive,
Pattern,
Fraction Digits,
Total Digits

WARNING Warn if present when the List Type Indicator is true.

Page 47 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Closed Enumeration Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

 DUPLICATE GLOBAL NAMES NOT ALLOWED

Values ERROR At least one enumeration literal value MUST be defined

Open Enumeration Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

 DUPLICATE GLOBAL NAMES NOT ALLOWED

Values ERROR At least one enumeration literal value MUST be defined

Value with Attributes Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

 DUPLICATE GLOBAL NAMES NOT ALLOWED

Type ERROR VALID NAME REFERENCE

 VALID MINOR VERSION EXTENSION

 Allowable type references follow the same rules as attribute
declarations (open enumerations and other VWA declarations are
also allowed)

 Circular references between VWA type assignments and/or VWA
attribute declaration are not allowed

 The simple facet for a later minor version of a core object cannot
change its simple type assignment

Type WARNING NON-DEPRECATED TYPE REFERENCE

Attributes &
Indicators

WARNING At least one attribute or indicator MUST be declared for the VWA

Attributes ERROR If a declared attribute has the same name as an attribute inherited
from another VWA, the type assignments of both attributes MUST
be identical

 If the VWA simple type is an open enumeration, an attribute
named ‘extension’ cannot be declared or inherited

 If one or more VWA attributes are typed as open enumerations, no
attributes named ‘<open-enum-attribute>Extension’
can be declared or inherited

Page 48 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Core Object Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

 DUPLICATE GLOBAL NAMES NOT ALLOWED

Extension ERROR VALID NAME REFERENCE

 CIRCULAR EXTENSIONS NOT ALLOWED

 VALID MINOR VERSION EXTENSION

Summary Facet ERROR The summary facet of a core object MUST declare or inherit at least
one attribute, element, or indicator

Business Object Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

 DUPLICATE GLOBAL NAMES NOT ALLOWED

Extension ERROR VALID NAME REFERENCE

 CIRCULAR EXTENSIONS NOT ALLOWED

 VALID MINOR VERSION EXTENSION

ID Facet ERROR The ID facet of a business object MUST declare or inherit at least
one attribute or element

Operation Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

 DUPLICATE GLOBAL NAMES NOT ALLOWED

Extension ERROR VALID NAME REFERENCE

 CIRCULAR EXTENSIONS NOT ALLOWED

 VALID MINOR VERSION EXTENSION

Request,
Response &
Notification
Facets

ERROR The non-empty facets of an operation MUST conform to one of the
following recognized enterprise messaging patterns:

o One-Way (RQ only)

o Notification (Notif only)

o Request-Response (RQ + RS)

o Solicit Notification (RQ + Notif)

o Request-Response with Notification (RQ + RS + Notif)

Page 49 of 49

© 2014 OpenTravel Alliance www.opentravel.org

Service Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Name ERROR REQUIRED VALUE

 VALID NAME FORMAT

 If a service is declared in a prior minor version of the owning
library, the name of the services MUST be identical

Operations ERROR A service MUST declare or inherit at least one operation

Extension Point Facet Validation Rules
Property Finding

Type
Validation Rule Descriptions (or Index)

Extension ERROR REQUIRED VALUE

 VALID NAME REFERENCE

 The extension point facet MUST be assigned to a different
namespace than the extended term or named entity

Extension WARNING Warn if the extended term or named entity is deprecated

