
OpenTravelTM Alliance
OpenTravel

Implementation Guide

Version 1.5

April 2010

This document is provided free of charge to OpenTravel members only. OpenTravel is the sole owner and licensor of
the information provided herein, and expressly and explicitly prohibits reproduction, unauthorized distribution in
any format and/or other misues of its contents.

The OpenTravel Alliance (OpenTravel) offers this publication for use at the discretion of the individual or

OpenTravel Implementation Guide 1-2

company. Each individual or company that uses this material does so at its own risk and with the
acknowledgment that the individual or company is solely and fully responsible for its use of this material.

About OpenTravel
The OpenTravel Alliance is passionate about solving the problems inherent with connecting multiple systems
within the complex travel distribution arena.

OpenTravel's mission is to engineer specifications that make data transmission flow smoothly throughout
travel, tourism and hospitality. OpenTravel creates, expands and drives adoption of open universal data
specifications, including but not limited to the use of XML, for the electronic exchange of business information
among all sectors of the travel industry.

OpenTravel is comprised of companies representing airlines, car rental firms, hotels, cruise lines, railways,
leisure suppliers, service providers, tour operators, travel agencies, solutions providers, technology companies
and distributors. Tens of thousands of OpenTravel message structures are in use, carrying tens of millions of
messages between trading partners every day.

OpenTravel Alliance
1740 Massachusetts Avenue
Boxborough, MA 01719 USA

+1 978 263 7606
Email: info@opentravel.org
Web: www.opentravel.org

OpenTravel Forum: www.OpenTravelForum.com

OpenTravel Wiki wiki.opentravel.org

Twitter: @OpenTravel

LinkedIn Group: OpenTravel Alliance

© 2010, OpenTravel Alliance. All rights reserved. OpenTravel is a trademark of the OpenTravel Alliance.

The OpenTravel Alliance is a corporation organized and operating under the laws of the United States. This document is provided free of
charge to OpenTravel members. OpenTravel is the sole owner and licensor of the information provided herein, and expressly and
explicitly prohibits reproduction, unauthorized distribution in any format and/or other misuse of its contents. OpenTravel reserves the
right to prosecute those who violate this prohibition to the fullest extent of the law.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.linkedin.com/
http://www.twitter.com/
http://wiki.opentravel.org/index.php/Main_Page
http://www.opentravelforum.com/
http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-3

Change Log

Version
Number

Date Contributor Changes

1 August 2007 Initial Release

1.1 June 2009 Gee Chia, IBM Added Section 3.2.8 Web Service Reliable
Messaging. Specification Manager added
Section 3.5.4 OpenTravel Model Viewer.

1.5 April 2010 Bonnie Lowell, OpenTravel Removed references to flattened files that are
no longer distributed with the OpenTravel
specification and updated Resources section.

1.5 April 2010 Gee Chia, IBM
Dipankur Pal, SkyTech

Contributed section 3.5 Lightweight Session
Management.

1.5 April 2010 Gee Chia, IBM
Doug Davis, IBM

Contributed section 3.4.1 Reliable Messaging
Guidelines: WS-RM.

1.5 April 2010 Mansour Mazinani, SITA Contributed section 3.4.2 Reliable Messaging
Guidelines: TypeX.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-4

Introduction
The OpenTravel Alliance (OpenTravel) is a member-funded, nonprofit organization formed in May 1999 by
major airlines, hoteliers, car rental companies, and companies that provide distribution and technology systems
to the travel industry. OpenTravel’s primary activity is to develop and maintain a library of Extensible Markup
Language (XML) schemas for use by the travel industry. These schemas constitute the OpenTravel XML
specification, which is based on the World Wide Web Consortium (W3C) XML Schema standard.

The purpose of this implementation guide is to provide, in a single document, information that an implementer
of the OpenTravel specification can use to more easily build software systems that are interoperable with other
travel systems. The guide should also be useful for analysts who need to understand how to use the OpenTravel
specification. In addition, it will help promote the adoption of the specification by members who have never
implemented XML schemas or who are just becoming involved with OpenTravel.

Guide Chapters
The guide has three chapters:

Chapter 1 presents some background information about OpenTravel and its activities and processes. It then
provides some basic introductory material on XML and XML schemas.

Chapter 2 describes the architecture of the OpenTravel specification. Specifically, this section describes the XML
schema architecture (schema modularity and the request and response model) upon which the OpenTravel
specification is based, and it describes supporting mechanisms such as OpenTravel code lists.

Chapter 3 explains how to use the OpenTravel specification to build travel systems. Specifically, this section
describes:

• Getting started with the OpenTravel Specification,
• Messaging options available to implementers of the OpenTravel specification,
• Guidance on how to describe and expose web services,
• Guidance on how to utilize lightweight session management,
• Guidance on reliable messaging, including WS-RM and TypeX, and,
• XML binding tools—the programs that automatically create pieces of software from XML schemas.

This document will be amended and expanded on an ongoing basis to address other topics relevant to the
implementation and use of OpenTravel schemas.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-5

Acknowledgments
OpenTravel’s success as an organization is the result of the commitment of its member companies, and their
willingness to provide resources, to realize the vision of a standard specification that enables richer
interoperability between travel trading partners and ultimately a better traveler experience. Several individuals
from member companies contributed to this publication. OpenTravel would like to recognize them and
acknowledge the time, effort and expertise they provided.

• Stephen Adkins, The Rubicon Group
• Sandy Angel, Marriott International
• Kevin Camenzuli, Avis Budget Group
• Gee Chia, IBM
• Adrianna Colbath, SITA
• Allison Danziger, US Airways
• Jordan Digby, Viator
• Lisa Fues, Marriott International
• Paula Heilig, Worldspan
• Dave Hollander, IBM
• Ron Kleinman, Sun Microsystems
• John Lambe, OpenJaw Technologies
• Mansour Rezaei Mazinani, SITA
• Becky McGee, Hertz
• David Morley, Marriott International
• Kajsa Palmberg, Amadeus
• Sean Parker, IBM
• John Ramos-Yeo, EDS
• Chuck Thackston, Worldspan
• John Turato, Avis Budget Group
• Tony Williams, Travel Technology Initiative

In addition, OpenTravel would like to thank those member companies who have provided funds for this project
as participants in OpenTravel’s Sponsorship Program:

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/
http://www.marriott.com/default.mi
http://www.united.com/
http://www.sabre.com/
http://www.bestwestern.com/
http://www.hyatt.com/

OpenTravel Implementation Guide 1-6

Table of Contents
Introduction..4

Guide Chapters..4
Acknowledgments...5

The OpenTravel Alliance...12
Mission and Objectives..12
Organizational Structure..12
Key Activities...13
Specification Release Process..14
Extensible Markup Language (XML)...15
XML Schemas...16

General Functional Implementation...17
OpenTravel Schema Design Best Practices...17
OpenTravel Schema Architecture..17

Message Level XML Schemas..18
Function Specific XML Schemas..19
Industry Common Types XML Schemas..19
Common Types XML Schemas..20
Simple Types XML Schemas..20

Supporting Architecture..20
Namespaces...20
File Naming...20
Enumerations and Code Lists..21

Enumerations..21
OpenTravel Code Lists..22
External Code Lists..23

Success/Warnings/Errors..24
Message Exchange Patterns...25

Request / Response (RQ/RS)..25
Notif...26

Generic Message Functionality..27
OTA_ReadRQ..27
OTA_UpdateRQ/RS...28
OTA_DeleteRQ/RS..28
OTA_CancelRQ/RS..28
OTA_FileAttachmentNotifRQ/RS..29
OTA_NotifReportRQ/RS..29
OTA_PingRQ/RS..30
OTA_ScreenTextRQ/RS...30

General Technical Implementation...31
Getting Started..31

Get Involved...32
Understand OpenTravel Resources..32

OpenTravel Webinars...32
OpenTravel Forum..33

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-7

OpenTravel Wiki...34
OpenTravel Message Users Guide..34
Online XML Schemas..34
OpenTravel Website...35
OpenTravel Alliance on Linked In..35
OpenTravel Mailing Lists...35

Identify OpenTravel Roles and Contacts..35
Participate..35

Identify Functional Requirements..35
Document Business Process Flow..35
Identify OpenTravel Messages...36
Identify Reusable Content...36

Identify Non-Functional Requirements...36
Ensuring a Stable Architecture and Interoperability with Trading Partners...36
Define Service Architecture...36

Develop the Specification...37
 Submit Project Team Proposal(s)..37
Submit Comments...37
Create Draft XML Schema..37
Create Business Scenarios and Instances...37

Implement the Specification...37
Identify Usage Profiles...37
Define Configuration Management...37
Test Sample XML Instances..38

Follow Up..38
Register Messages...38
Provide Feedback..38

Non-Functional Requirements...38
Payload Transaction Management..38
State Maintenance...40
Message Transport...40

Definitions and Conventions..41
SOAP Messaging...42

Purpose...42
The SOAP Transport Protocol...42
The Need for Interoperability..44

Scope..46
References..46

Philosophy of Interoperability...46
SOAP Version 1.1 and 1.2..46
SOAP Messaging and SOAP RPC..47

Differences between SOAP Messaging and SOAP RPC...47
WSDL's Document/ Literal Binding...48
SOAP Messaging Benefits...48
SOAP Messaging vs. RPC Guidelines...49

SOAP Action URI..49

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-8

SOAP Messaging and the SOAP Action URI...49
SOAP Intermediaries ..49
SOAP Action URI Guidelines...50

SOAP Envelope Content...50
SOAP Header Content..50
SOAP Body Content...51
SOAP Attachments...51
SOAP Fault vs. OpenTravel Error..51
Examples...52

OTA_ReadRQ - Correct..52
OTA_ReadRQ - Incorrect - Escaped XML...52
OTA_ReadRQ - Incorrect - Wrapped in Other XML...53
OTA_ProfileReadRS - Successful, Correct..53
OTA_ProfileReadRS - Unsuccessful, Correct (Application-Level Error)..54
OTA_ProfileReadRS - Unsuccessful, Correct (SOAP-Level Error)...54
Sample SOAP Messaging WSDL for OpenTravel..55
SOAP with Attachments Sample...56
WS-Security Token Sample...57
XML-Signature Sample...58
XML-Encryption Sample, Correct..59

HTTP Messaging...61
Background..61

2001C OpenTravel Infrastructure Guidelines..61
Design Goals of OpenTravel (2001C)..61

The Need for Interoperability..62
Emerging Trends...62
New Design Goals...62
Requirements for Interoperability..62

OpenTravel Transport Protocol Reference: HTTP...63
Philosophy of Interoperability..63
Simple HTTP POST vs. ebXML...63
Standard HTTP..63
HTTP Message Content..63
Encryption..66
Authentication..66

Other Features...66
Logging...66

Web Service Description...67
Introduction...67

Terminology..67
Purpose..67
Scope..68

WSDL Best Practices..68
Overview..68
WSDL Definition...69

OpenTravel WSDL Creation..69

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-9

Building Modular WSDL..69
Creating an Interface Definition WSDL...70
Creating an Implementation Binding WSDL..71
Implications to Toolkit Use/Test Results...72

OpenTravel WSDL Reference...72
W3C WSDL Usage Breakdown..73
Interface Definition WSDL Sections..73
Implementation Binding WSDL Sections..73

OpenTravel WSDL Usage Breakdown...73
Interface Definition WSDL Rules...74
Implementation Binding WSDL Rules...75

Examples...76
Consolidated Interface Definition and Implementation Binding WSDL..77
Incorrect Schema Import..78

Authentication..79
Introduction...79

Terminology..79
Purpose..79
Scope..80

Additional Non-Functional Requirements...82
Connection Management...82
Synchronous and Asynchronous Messaging...82

Synchronous Messaging..83
Asynchronous Messaging..83

Transport Security..84
Payload Security...85
Message Integrity...85
Message Encryption...85
Authentication..85
Authorization..85
Security Policies (per process)..85
Quality of Service..86
Guaranteed Delivery...86
Message Priority...87
Message Lifetime..87
Flow Control...87
Message Bundling...88
Service-Level Agreements..88

OpenTravel Reliable Messaging Guidelines...89
Web Services Reliable Messaging (WS-RM)..89

Introduction...89
Purpose..89
Scope..90

OpenTravel Messaging Requirements...90
OpenTravel Messaging Context..90
Reliable Messaging Definition..90

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-10

OpenTravel Messaging Requirements..91
Terminology..92

WS-RM Overview..93
Interoperability...93
WS-RM Messaging Model..94
Security...96
Sequences..96
Essential Properties..97
Delivery to Non-Addressable Endpoints...97
Essential Properties..99

WS-RM Implementation Details..99
Processing..100
Request/Response (Non-Addressable Client)...101
Request/Response (Addressable Client) ..103
Securing reliable message exchange..103
Client Side Impacts...105
Server Side Impacts..105

OpenTravel Requirements Crosscheck...105
Messaging Scenarios...106

Failed to Receive...106
Failed to Respond...106
Failed Connection...106
Failed Application...107

Sample OpenTravel Messages with WS-RM Enabled...107
Synchronous Request/Response..107
Asynchronous Request/Response..108
Security Enabled for Secure Reliable Messaging Exchange...110

References...110
Web Services Specifications:..110
Web Service Resources:..111
Vendors and software products providing WS-Reliable Messaging support:.................................111

TypeX Reliable Messaging...112
Introduction...112

Purpose..112
Scope..112
OpenTravel Messaging Requirements..113

TypeX Overview...115
Interoperability...115

TypeX Messaging Context..115
Essential Properties..116
TypeX Envelope..117
Transports...118
Message Exchange Patterns...118
Non-Addressable Sender..119
Reliability..119
XATAP...119

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-11

Reliability..121
Delivery Reporting..121
Durability..121
Session Management...122
XSM Benefits..122

TypeX Implementation Details...123
Processing..123
Fire-and-Forget...124
Request/Response (Non-Addressable Client)...124
Request/Response (Addressable Client)...124
Asynchronous Request/Response..124
Client Side Impacts...124
Server Side Impacts..124

OpenTravel Requirements Crosscheck...125
Messaging Scenarios...126
TypeX Message Samples..127

Fire-and-Forget...127
Synchronous Exchange...129
Asynchronous Exchange...131
SOAP Binding for TXM..133
JMS Binding for TXM..133

References...134
General Technical Implementation: Session Management..136

Introduction..136
A Lightweight Session Management Solution using WS-Addressing EPR...136

WS-Addressing Concepts...137
Using EPRs in Web Applications ..137

Use Case: Flight Reservation...137
Designing the Solution..140

Explicit Header...142
Implicit Header..143

The Client explicitly sends a CreateSession request...146
The Server implicitly creates a session context..146

XML Data Binding...147
Introduction...147
Design Considerations...148
Tools Available...148

Commercial Tools...148
Java Tools..148
Microsoft Tools...148
Delphi Tools..149
C++ Tools..149

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-12

The OpenTravel Alliance

Mission and Objectives
The OpenTravel Alliance is passionate about solving the problems inherent in connecting multiple systems
within the complex travel distribution arena.

OpenTravel's mission is to engineer specifications that make data transmission flow smoothly throughout
travel, tourism and hospitality. OpenTravel creates, expands and drives adoption of open universal data
specifications, including but not limited to the use of XML, for the electronic exchange of business information
among all sectors of the travel industry.

OpenTravel is comprised of companies representing airlines, car rental firms, hotels, cruise lines, railways,
leisure suppliers, service providers, tour operators, travel agencies, solutions providers, technology companies
and distributors.

OpenTravel is a not-for-profit trade association, founded in 1999 by travel companies, with a primary focus on
the creation of electronic message structures to facilitate communication between the disparate systems in the
global travel industry. Tens of thousands of OpenTravel message structures are in use, carrying tens of millions
of messages between trading partners every day.

More information about OpenTravel can be found at www.opentravel.org.

Organizational Structure
OpenTravel, an organization with many member companies, has a board of directors that is responsible for
defining the strategic direction of OpenTravel as a whole. The board of directors consist of representatives from
each of the industries represented within OpenTravel and are elected by the general membership.

OpenTravel’s staff, contracted by the board of directors, consists of specification managers, a technical
administrator, a full-time executive director, as well as a limited staff to provide support in the areas of
accounting, legal counsel, member administration, web hosting, and graphic design.

In addition to staff, OpenTravel has an Interoperability Committee (IO) that oversees four work groups, one
subcommittee and ad hoc project teams. IO consists of elected representatives from each work group. Figure
1.1-1 depicts the OpenTravel organizational structure.

The four work groups and the ad hoc project teams perform the hands-on specification development work.
Typically, this work consists of a mixture of requirements analysis and development of XML schemas. Any
member may participate in an OpenTravel work group or project team.

Work groups are roughly organized by vertical (hospitality, transport, travel integration) while project teams are
generally organized by function (vehicle exchange, hotel promotional message, cruise dining availability, etc.). A
project team is a part of the most appropriate work group, although any member can participate in any project
team, regardless of the vertical(s) their company serves. Schemas are created or modified by project teams, and
project team deliverables are reviewed by the work groups.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-13

The Data Content/Best Practices Subcommittee reviews all new and modified XML schemas approved by the
work groups to ensure that they follow OpenTravel best practices for XML schema design and that content
within those schemas is harmonized with the OpenTravel specification as a whole.

The Communications Committee works with the Executive Director to support the market positioning and
message of the OpenTravel Alliance in each of the industry verticals it serves. Members review marketing
materials, participate in marketing projects and provide assistance to the organization to ensure OpenTravel's
important role in the marketplace is understood.

All OpenTravel work group, committee and subcommittee participants are volunteers from OpenTravel member
companies who are committed to the creation and utilization of open standards in the travel industry.

Figure 1.1-1: OpenTravel Work Groups, Project Teams and Subcommittees

Key Activities
The primary activity of OpenTravel is to develop and maintain a library of XML schemas for use by the travel
industry. Semiannually, OpenTravel issues the schemas as a specification, which includes all new, revised, and
existing schemas and any ancillary documentation such as a message users guide. In addition, OpenTravel
administers the registration of implementers of the OpenTravel specification and provides guidance related to
XML architecture and web services implementation of the OpenTravel specification. OpenTravel also hosts a
yearly conference called the Advisory Forum.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-14

Specification Release Process
OpenTravel generally publishes a specification twice a year, usually June and December. Each publication is
labeled as the year plus one alpha character (e.g., 2010A and 2010B). OpenTravel defines, in advance, the
milestones and dates for each publication, and the specification management team works with each group to
ensure that these are met as that publication progresses. Figure 1.1-2 illustrates the OpenTravel publication
process and the activities performed by each group as the release progresses.

Figure 1.1-2: OpenTravel Release Process

Each release adheres to the same process, which occurs in the following sequence:

• Project team proposals (PTPs). A PTP is a document that describes a proposed project and is the first
step that each project must take to becoming an official OpenTravel project. The PTP outlines such
things as the purpose, scope, and resource requirements to ensure that all stakeholders share a
common understanding of numerous aspects of the project. A PTP may be submitted by any
OpenTravel member company and is reviewed by the appropriate work group for discussion and
acceptance. OpenTravel provides three types of PTP templates from which member companies can
create a proposal—one for business requirements definition (no schema work), one for new schema
development and one for more general projects such as a study. The PTP templates are available on the
OpenTravel Wiki.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://wiki.opentravel.org/index.php/Public:Project_Team_Proposal
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-15

• Development. The project team develops new XML schemas based on the PTPs and modifies existing
specification material as needed. All new and updated schemas and other material to be included in
the upcoming specification release are reviewed by the appropriate work group. Once the work group
approves the schemas and other material, it submits them to DC/BP for a quality review. DC/BP reviews
the project teams’ and work groups’ materials and may request clarification or updates, if needed.
Once DC/BP is satisfied with the work, it submits a technical recommendation to IO to release the work
for member review.

• Member review. During the member review period, OpenTravel members can comment on any new
schemas or other materials included in the new specification release. Typically, a member review lasts
for 30 calendar days. Members can use that time to submit comments to make changes. The work
groups and project teams then review and address the comments. Following the close of the member
review period, the XML schemas and other materials are resubmitted to DC/BP for another quality
review before undergoing public review. Again, DC/BP will approve the work or may ask for additional
updates from the work group. Once DC/BP is satisfied with the work, it submits a technical
recommendation to IO to release the specification for public review.

• Public review. Typically, a public review lasts for 30 calendar days during which time both members and
nonmembers can submit comments to make changes. The work groups and project teams use this
period to review and address all comments submitted. Following the close of the public review period,
the specification is resubmitted to DC/BP for one final quality review before being released for final
publication. Again, DC/BP will approve the work or may ask for additional updates from the work group.
Once DC/BP is satisfied with the work, it submits a technical recommendation to IO to release the
specification as a final publication.

• Publication. Each publication (e.g., 2010A) consists of XML schema files and multiple supporting
documents. The OpenTravel specification is typically published in June and December of a given year.
Each publication is available on the OpenTravel website under Specifications.

Comments about any aspect of the OpenTravel specification or documentation can be submitted via the web
form available on the OpenTravel public website. The comments are reviewed by the specification manager and
provided to the appropriate work group for review.

Extensible Markup Language (XML)
The OpenTravel specification leverages XML for the electronic exchange of business information among all
sectors of the travel industry. The W3C defines XML as “a simple, very flexible text format derived from SGML
(ISO 8879). Originally designed to meet the challenges of large-scale electronic publishing, XML is also playing
an increasingly important role in the exchange of a wide variety of data on the Web and elsewhere.” The W3C
issued its first XML recommendation in February 1998.

OpenTravel selected XML as the language for expressing its travel data standards because XML offers a standard
framework for creating data-centric messages that are readily processed by web applications. The following
features of XML contributed to its selection as the preferred syntax for the OpenTravel specification:

• XML supports the exchange of structured data over the Internet.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.w3.org/XML/
http://www.opentravel.org/Specifications/CommentOnSpec.aspx
http://www.opentravel.org/Specifications/CommentOnSpec.aspx
http://opentravel.org/Specifications/Default.aspx
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-16

• XML is, increasingly, the predominant manner in which computers store, manage, and exchange data.

• XML allows for the definition of data elements meaningful to trading partners or an entire industry
segment.

• XML messages can include action elements that instruct receiving systems to undertake certain
operations.

XML Schemas
To support validation of XML documents, the W3C created the XML Schema standard and released its first XML
Schema recommendation in May 2001. Other XML schema standards exist, but OpenTravel has adopted the
XML Schema standard recommended by the W3C. The W3C XML Schema standard provides a syntax with
which the structure and data of XML instance documents can be validated by software systems. OpenTravel
uses the XML Schema standard to document its travel-specific messages in a standard language. The
specification is made up of many XML Schema files, which define the data structures that travel companies can
use to automate information exchange for a wide array of transactions.

It is not uncommon for the W3C XML Schema standard to be referred to as “XSD” in the same way that Adobe
Acrobat files are often referred to as PDF. “XSD” stands for XML Schema Description and is synonymous with
XML Schema (all XML Schema files end in an “.xsd” file extension).

OpenTravel members are not required to be proficient XML schema writers. However, some understanding of
basic XML schema concepts will likely make participation in industry-specific working groups, project teams and
subcommittees more meaningful. A number of resources are available to those wishing to familiarize
themselves with the W3C XML Schema standard. The W3C XML Schema page maintains a list of useful XML
Schema presentations, guides, and tutorial materials. A number of books and third-party websites also provide
an introduction to the W3C XML Schema standard.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.w3.org/XML/Schema
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-17

General Functional Implementation
This section describes the architecture of the OpenTravel specification. Specifically, it describes the physical
XML schema architecture, other supporting structures, message exchange patterns, and generic message
functionality.

OpenTravel Schema Design Best Practices
Each XML schema within the OpenTravel specification is built according to a well-defined set of best practices
and design guidelines. These guidelines are described in the OpenTravel “XML Schema Design Best Practices”
document that is included with each OpenTravel publication. Developers of OpenTravel schemas should be
familiar with this document because it provides specific instructions on designing and developing XML schemas
for submission to the relevant work group and subsequent review by DC/BP.

The manner in which an XML schema is developed by one of the four work groups (Hospitality, Transport,
Architecture and Travel Integration) may differ, depending on the needs or technical abilities of the team
involved. Some projects may begin with a draft XML schema provided by the project champion. Others may
require that the work group develop the XML schema based on a set of requirements. In either case, work
groups should use “OpenTravel Schema Design Best Practices” as a guide.

As noted in Section 1, the OpenTravel specification is based on the W3C XML Schema standard, which is
designed to be used in different ways by various end users such as standards bodies and individual
implementers. Therefore, it is critical that OpenTravel develop and maintain its library of XML schemas based
on its own specific guidelines so that the specification as a whole is built against the same set of design
principles. This will provide several benefits, including the following:

• A coherent OpenTravel specification. Since all OpenTravel XML schemas are built according to a single,
coherent set of design principles, the OpenTravel specification as a whole will be easier to maintain and
use.

• Increased interoperability among travel systems. Since software programs are the ultimate consumers
of the OpenTravel specification, alignment to a shared XML schema design will promote software
systems that are easier to integrate than would otherwise be the case.

• Increased reuse of XML content throughout the specification. Since a consistent set of XML content
types (complex types, simple types, attribute groups, etc.) recurs throughout the specification, the level
of reuse of the XML schemas is greatly increased.

OpenTravel Schema Architecture
The OpenTravel specification is a large collection of XML schemas that are organized hierarchically. This design
enables an efficient method for maintaining, understanding, and implementing the specification. Also, it
leverages proven design techniques from XML schema design as well as other software disciplines such as
object orientation.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravelcommunityforum.com/OpenTravelImpGuide/OpenTravel_SchemaDesignBestPractices_v3.08_April_2010.pdf
http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-18

Any data exchange that uses the OpenTravel specification may require content from several throughout the
XML schema hierarchy. For instance, an airline reservation booking message sent from one trading partner may
involve validation by an XML schema that includes several other schemas. Those files may define much of the
content (i.e., elements, attributes, types) that comprises that booking request message.

In this way, an OpenTravel implementer can expect to use a hierarchy of XML schema files, rather than a single
XML schema file, for a given message exchange. Moreover, modifications to the specification to support a
particular transaction may affect more than one XML schema file. Figure 2-1 depicts the OpenTravel XML
schema hierarchy and outlines the relationships between the different types of XML schema files in the
OpenTravel specification.

Figure 2-1. OpenTravel XML Schema Hierarchy

Message Level XML Schemas
Each message level XML schema in the OpenTravel specification represents a particular type of business
transaction. Collectively, these messages embody the core mission of OpenTravel, which is to provide XML
messages that automate business processes, thereby lowering the cost of doing business and promoting new
distribution channels for travel inventory.

The following are examples of message level schemas:

• OTA_AirBookRQ
• OTA_AirBookRS

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-19

• OTA_HotelResModifyRQ
• OTA_CruiseBookRQ.

Section 1 noted that the OpenTravel organizational structure is divided into four work groups: Hospitality,
Transport, Architecture and Travel Integration. This structure is reflected in the message level XML schemas;
many schemas exist for each industry, and each represents a business process endemic to that industry.

Each message level XML schema references other XML schemas that, in turn, reference others. These message
level schemas contain the declaration of the root element that appears as the primary node of any XML
instance document based on that XML schema. The content contained within that root node may be defined in
the message level schema itself or in files it includes.

Function Specific XML Schemas
For certain related messages, the specification provides an XML schema that serves as a container for reusable
data structures. For example, the OTA_HotelReservation schema contains a set of complex types that are
referenced from the following messages:

• OTA_HotelResRQ.xsd and OTA_HotelResRS.xsd
• OTA_HotelResNotifRQ and OTA_HotelResNotifRS
• OTA_HotelResModifyRQ and OTA_HotelResModifyRS
• OTA_HotelResModifyNotifRQ and OTA_HotelResModifyNotifRS.

By aggregating these complex types into a single XML schema, designers and implementers alike can more
easily manage a collection of data structures that would otherwise be duplicated and dispersed across
numerous files. This promotes consistency between messages that provide related functionality.

Industry Common Types XML Schemas
Because the OpenTravel specification provides numerous XML schemas for each industry, all schemas that
pertain to a specific industry will naturally share common data types. The OpenTravel modularity model
supports this need by containing XML schema files intended for use throughout the set of XML schemas for
each industry. For example, the OTA_AirBookRQ and the OTA_AirPriceRQ schemas both need to accommodate
information related to an air itinerary. Rather than having each file define that content separately, the
OTA_AirCommonTypes schema file provides a single definition of that data for use throughout the OpenTravel
air schemas. This single data definition is manifested as a complex type named AirItineraryType.

This design is, of course, not specific to the OpenTravel air schemas alone. The OpenTravel specification
contains one or more common type schemas for each industry. Because the OpenTravel schemas are designed
predominantly with local element definitions and global type declarations, these common types files contain
only named types and global attribute groups. The availability of these data types promotes content reuse
throughout the specification.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-20

Common Types XML Schemas
In addition to the industry common types schemas, the OpenTravel specification provides a common types file
called OTA_CommonTypes that contains data structures referenced throughout the specification and shared by
each of the respective industries. The data types contained in this file may be referenced from message level
files, function-specific files, and industry common files. Any of these files can declare elements that reference
complex types, simple types, and attribute groups in the OTA_CommonTypes file.

Simple Types XML Schemas
The OTA_SimpleTypes XML schema serves as a module that contains simple types that are available for use
throughout the specification. The design intent of this file is identical to that of the OTA_CommonTypes file in
that it serves as a single container for global simple types. These types can be used at any level of the schema
hierarchy.

Most of the simple data types contained within this schema provide basic data structures that the other
schemas use to build larger collections of data. The following are examples of these simple data types:

• StringLength1to32. Any attribute of this type can contain a string value ranging from 1 to 32 characters
(including spaces).

• DateOrDateTimeType. Any attribute of this type can contain either a date or a date and time value.

Supporting Architecture
This subsection describes some additional, supporting frameworks in the OpenTravel specification. An
understanding of these frameworks will aid in the use of the OpenTravel XML schemas in run-time
environments.

Namespaces
The OpenTravel specification is designed so that all message level XML schemas are part of the same
namespace. According to this design, an XML schema that requires content from another XML schema can
reference that file via the xsd:include mechanism.

Only the message level XML schemas are associated with a single target namespace. The OpenTravel
namespace is a URL format: http://www.opentravel.org/OTA/2003/05. Content within the common types files
(OTA_CommonTypes, OTA_SimpleTypes, etc.) is not associated with any target namespace and is, therefore,
coerced into the OpenTravel namespace at run-time.

File Naming
Each OpenTravel schema is named according to a standard naming convention. Each file name should be
identical to the root element name within that schema. Therefore, each file begins with an “OTA_” prefix and
concludes with the remainder of the root element name. For example, the root element name of the
“OTA_VehResRQ.xsd” schema file is “OTA_VehResRQ”.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-21

OpenTravel mandates a naming convention for all XML schemas that model a request and response transaction.
For instance, the name of all request messages ends with an “RQ” suffix. Similarly, the name of all response
messages ends with an “RS” suffix. In this way, a newcomer to the OpenTravel specification should find it
relatively easy to identify the XML schemas that pertain to a particular message exchange pattern.

Additionally, the OpenTravel schemas are named so that the files associated with each industry (e.g., air, car,
hotel, cruise) are categorized and easily identified for each industry. Figure 2-2 depicts how several of the
OpenTravel XML schemas appear within a desktop file explorer.

Figure 2-2. OpenTravel XML Schema Categories

Enumerations and Code Lists
XML message exchanges commonly require the ability to restrict a field to a limited set of values. Business
requirements may control this, but it is also typically preferred to limit the allowable values for an element or
attribute to as few as possible to facilitate validation of values. To support this need, the OpenTravel
specification uses XML enumerations and code lists, which are described below. (The “OpenTravel Schema
Design Best Practices” document released with each OpenTravel publication provides more detail on these
content types.)

Enumerations
The OpenTravel XML schemas contain many elements and attributes that define the allowable values for the
respective field. Enumerations are used when the list of values is static or when it is unlikely that values will be
added. The following are examples of this scenario:

• Days of the week. The seven days of the week are static, and not expected to change.
• Gender. The two human genders (male and female) are fixed.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.opentravelcommunityforum.com/OpenTravelImpGuide/OpenTravel_SchemaDesignBestPractices_v3.08_April_2010.pdf
http://www.opentravelcommunityforum.com/OpenTravelImpGuide/OpenTravel_SchemaDesignBestPractices_v3.08_April_2010.pdf
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-22

OpenTravel Code Lists
In addition to complex, simple, and native data types (string, integer), the OpenTravel XML schemas contain
many code values. Most of these values refer to code lists maintained by OpenTravel. Each code refers to a
specific value contained in one of many code lists. The OpenTravel code lists are included with each publication
and, as a whole, are referred to as the OpenTravel code table. The code table is provided in spreadsheet format
as well as in an XML instance.

Figure 2-3 depicts an excerpt from the OpenTravel code table spreadsheet. The name of the code list shown is
“Address Use Type,” or AUT. This abbreviation is used within the OpenTravel schemas to refer to a code from
this specific list.

Figure 2-3. OpenTravel Code List Excerpt

The AUT code list contains 12 codes, each of which can be used to indicate the type of an address contained
within an OpenTravel-based XML instance document. The OpenTravel code list administrator uses red font to
identify codes that are new with a particular publication.

All code list references in the OpenTravel schemas are typed with the OTA_CodeType simple type and the
specific code list associated with an XML attribute is defined within the XML schema annotation for that
attribute. Figure 2-4 depicts an attribute associated with the “Address Use Type” (AUT) code list.

<xs:attribute name="UseType" type="OTA_CodeType" use="optional">
 <xs:annotation>
<xs:documentation xml:lang="en">Describes the use of the address (e.g. mailing, delivery,
billing, etc.). Refer to OpenTravel Code List Address Use Type (AUT).</xs:documentation>
 </xs:annotation>
</xs:attribute>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-23

Figure 2-4. OpenTravel Code List Reference

An XML instance document containing this “UseType” attribute would then specify the appropriate code value
(e.g., 3) from the AUT code list.

In addition to the code list spreadsheet, OpenTravel publishes an XML format of the code lists to support the
needs of the implementer community. This XML format comprises an XML instance document and an
accompanying XML schema. The schema is ancillary and only serves to validate the format of the published
XML instance. The instance document contains the same codes that are in the spreadsheet, but presents them
in a structured XML format. Figure 2-5 depicts an excerpt from the OpenTravel code table XML instance
document.

<OTA_CodeTable Name="Address Use Type" NameCode="AUT" CreationDate="2003-06-01">
 <Codes>
 <Code Value="1" CreationDate="2003-06-01">
 <CodeContents>
 <CodeContent Language="en-us" Name="Delivery"/>

</CodeContents>
 </Code>
 <Code Value="2" CreationDate="2003-06-01">

<CodeContents>
<CodeContent Language="en-us" Name="Mailing"/>

</CodeContents>
</Code>
<Code Value="3" CreationDate="2003-06-01">

<CodeContents>
<CodeContent Language="en-us" Name="Billing"/>

</CodeContents>
</Code>
<Code Value="4" CreationDate="2003-06-01">

<CodeContents>
<CodeContent Language="en-us" Name="Credit card"/>

</CodeContents>
</Code>
<Code Value="5" CreationDate="2003-06-01">

<CodeContents>
<CodeContent Language="en-us" Name="Other"/>

</CodeContents>
</Code>

…

Figure 2-5. OpenTravel XML Code List Excerpt

The code table instance document can be leveraged by implementers to automate the validation of codes that
appear in OpenTravel message payloads. Specifically, all OpenTravel codes are typed with the OTA_CodeType
simple type, and each code value simply references the spreadsheet. If an implementer needs to consume the
code lists and to save them into a database for validating codes from incoming XML documents, the XML format
is readily available and accessible.

External Code Lists
In addition to codes maintained by OpenTravel, the OpenTravel XML schemas contain some references to code

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-24

lists maintained by other standards organizations. Figure 2-6 depicts an excerpt from the
OTA_AirCommonTypes schema, which refers to an International Air Transport Association (IATA) location code.

<xs:attribute name="LocationCode" type="StringLength1to8" use="optional">
 <xs:annotation>
<xs:documentation xml:lang="en">A 3 character ATA/IATA city code of telephone
location.</xs:documentation>
 </xs:annotation>
</xs:attribute>

Figure 2-6. External Code Reference

Notice that the data type associated with this attribute is not the OTA_CodeType simple type that is used for
any code maintained by OpenTravel. Rather, the StringLength1to8 simple type is used to allow any value of 1 to
8 characters in length. Individual trading partners would be responsible for ensuring that each code passed is a
valid IATA code.

Success/Warnings/Errors
Any OpenTravel message exchange requires that the participating systems have a mechanism to share data
about the processing of that message and whether it was successful or not. The OpenTravel specification
addresses this need by providing a consistent set of elements within all response XML schemas. These elements
allow the responding party to indicate if the message was processed successfully or if any errors or warnings
were encountered. The elements are as follows:

• Success. This element is not intended to contain any data. Rather, the mere presence of a success
element within a response message indicates that the incoming message (request or notification) was
processed successfully.

• Warnings. This element indicates that the recipient of a message identified one or more warnings. A
warning is a business-level error. A warning would be generated, for example, by a request to book a
flight that does not exist or a request to book a hotel room when none are available for the dates
requested. The XML content might be syntactically valid, but the receiving application cannot fulfill the
request.

• Errors. This element indicates that an error occurred in the processing of an incoming message (request
or notification). An error is defined as a critical error caused by corruption of a message in transit or a
communication failure. An error would be generated, for example, by an unforeseen disruption of an
application or its connection to a trading partner application. The data structure of this element is
identical to the Warnings element with the exception of the NodeList attribute, which provides an
XPath expression that identifies the nodes that caused the error.

Figure 2-7 depicts these elements as they typically appear in an OpenTravel response message (the root and
content elements are given generic names in this diagram and do not reflect a specific OpenTravel schema).

The relationship of these XML schema elements is significant, because it reflects the response data structure
returned to the sender of an incoming message. The root element can contain either errors or other data
(success, warnings, or response information). If errors are present, the Errors element may identify the XML

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-25

content to which each error pertains. If a success element is present, it may be accompanied by core response
information (represented by the element named ResponseInfo in Figure 2-7) and any relevant warnings.

Figure 2-7. OpenTravel Response Message Structure

Message Exchange Patterns
To accommodate the variations in which data exchanges are done, the OpenTravel XML schemas support
several distinct types of trading partner interactions, known as message exchange patterns. Each pattern serves
a different purpose. For example, one pattern supports requests for information, while another supports the
delivery of information to a recipient. This subsection describes the message exchange patterns that are
represented within the OpenTravel specification and the naming conventions that apply to each. (Section 3
describes additional considerations—message acknowledgment, session management—that OpenTravel
implementers will need to be aware of when managing XML transactions.)

Request / Response (RQ/RS)
The most prevalent message exchange pattern supported by the OpenTravel specification is known as the
request/response pattern. Any transaction that conforms to this pattern will be invoked by one trading partner

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-26

requesting information explicitly from another party. The requesting party sends a message to the receiver
indicating what data are being requested; this is the request part of the transaction. The receiver then
processes the request and returns the relevant data to the requester; this is the response part of the
transaction.

Figure 2-8 depicts a typical message exchange that conforms to the request/response pattern.

Figure 2-8. Request/Response Message Exchange Pattern

Most of the message level XML schemas in the OpenTravel specification conform to this exchange pattern. For
instance, Section 2.2.1 cited the OTA_AirBookRQ and OTA_AirBookRS as examples of message level XML
schemas. The OTA_AirBookRQ schema represents the request, and the OTA_AirBookRS represents the
response.

Notif
Another message exchange pattern supported by the OpenTravel specification is known as the “notif” pattern.
Any transaction that conforms to this pattern involves the delivery of data from one trading partner to another
party without the request to do so. Therefore, this pattern can be understood as a “push” of data to another
party as opposed to a “pull” of data, which describes the request and response pattern.

The sender delivers (pushes) a message to one or more predefined recipients. Any recipient of that message
will then process the data as needed and provide a response back to the sender indicating that the payload was
received. Figure 2-9 depicts a typical message exchange that conforms to the notif pattern.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-27

Figure 2-9. Notif Message Exchange Pattern

Generic Message Functionality
In addition to the industry-specific message level XML schemas that constitute the core of the OpenTravel
specification, several other message pairs support generic functions that are not tied to a specific industry or
business process, but, rather, are shared by all industries. This subsection provides an overview of these
message pairs and explains how implementers can use them to support core processes. The “OpenTravel
Message Users Guide” contains specific examples of how these messages might be used in a real-world
scenario.

OTA_ReadRQ
The Read request message provides the ability to perform the following functions:

• Identify a specific record and retrieve its entire contents
• Request a reservation whether the booking ID number is known or unknown
• Request a list of reservations for a traveler
• Request a list of travelers that meet specified criteria.

Each Read request message can specify whether the reservation itself should be returned if an exact match is
found or if a list of reservations should always be returned. The particular type of response to the Read request
message will vary based on the type of records requested. The following are examples of the types of records
requested and the possible message responses:

• Airline reservation—OTA_AirBookRS, OTA_ResRetrieveRS
• Package reservation—OTA_PkgBookRS, OTA_ResRetrieveRS
• Profile—OTA_ProfileReadRS
• Hotel reservation—OTA_HotelResRS, OTA_ResRetrieveRS
• Rail reservation—OTA_RailRetrieveRS
• Loyalty account—OTA_LoyaltyAccountRS

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-28

• Insurance plan booking—OTA_InsuranceBookRS
• Cruise reservation—OTA_ReadRQ, OTA_ResRetrieveRS.

OTA_UpdateRQ/RS
The Update message pair supports the ability to open an existing record, identify the information that needs
changing, transmit the data corresponding to the appropriate elements in the tree, and add or replace the data
in the record. Update operations typically affect parts of a record rather than the entire record.

Because these operations tend to be more complex and difficult to manage, the OpenTravel specification
defines two approaches to updating records. OpenTravel strove to address several design goals, including the
following:

• Minimize the size of the XML payload required to represent an update transaction
• Define an explicit representation about what has changed
• Define a representation with a clear and simple conceptual model
• Create a content-independent, general-purpose representation that will be reusable in future

OpenTravel specifications
• Provide a simple-to-implement “replace” option to allow developers to get simpler implementations

running quickly (at the expense of the first two goals).

Because a receiving system may store data to be modified in a relational database and not in an XML document
format, it may not be possible to reconstruct the original document that transmitted the data. Therefore,
OpenTravel recommends that implementations performing a partial update use the OTA_ReadRQ message to
obtain the structure of the XML tree prior to constructing an Update request.

OTA_DeleteRQ/RS
The Delete message pair supports the ability to identify an existing record and remove the entire record from a
system. The exact implementation of a delete action depends on the business rules of an organization.
However, a sequence of events for a delete operation may include the following:

• Requestor submits a Read request to view a record.
• Responder returns the record for the requestor to view.
• Requestor submits a Delete request.
• Responder removes the record and returns an acknowledgment.

Before deleting a record, a requesting party may need to confirm that the target record has not been modified.
The Instance attribute on the UniqueID element can be used to provide that information. Finally, the POS
element can be used to determine whether the requesting system or user has permission to delete the object
being read.

OTA_CancelRQ/RS
The Cancel message pair provides the ability to cancel a booked reservation (e.g., an airline, car, or hotel
reservation) and supports a two-step cancellation process. Individual business rules may determine how to

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-29

process a cancel request. For instance, if a receiving system determines that a cancellation policy applies, it may
choose to return the OTA_CancelRS message with a pending status and a collection of cancellation rules,
allowing the originating party to determine if the cancellation process should continue. The originating party
would then resend the OTA_CancelRQ. If that request contained an Ignore flag, the responder would send a
confirmation response, thus ending the message conversation with no action being taken to cancel the
reservation.

A value of “Commit” in the “CancelType” attribute indicates a definitive instruction to process the cancellation.
This message would expect the response of Status=“Cancelled,” and possibly a cancellation ID which would
complete the cancellation process. The Cancel request is the same message in each case, with the “CancelType”
attribute indicating the action to be taken on the request.

In a Cancel request, one of the following actions must be specified:

• Initiate—indicates the initial request to cancel a reservation
• Ignore—indicates a rollback of the request to cancel, leaving the reservation intact
• Commit—indicates a request to complete the cancellation.

The associated Cancel response will return one of the following statuses:

• Pending—indicates the initial request to cancel a reservation is pending confirmation to complete the
cancel action. Cancel rules or policies may be returned in the response.

• Ignored—indicates the request to cancel was rolled back, leaving the reservation intact.
• Cancelled—indicates the cancellation is complete. A cancellation ID may be returned along with the

response.

OTA_FileAttachmentNotifRQ/RS
The OTA_FileAttachmentNotif request and response messages enable a sending system to physically transfer
encoded binary files to a receiving system that will store or process them. The request XML payload and any
encoded files are transferred together in a single envelope. The receiving system uses the request message XML
content as a table of contents with the descriptive information it needs to decode and store the files. The
response message acknowledges the received files and returns success, warnings, or errors as appropriate.

OTA_NotifReportRQ/RS
The OTA_NotifReportRQ/RS message pair provides the ability to report on whether database updates have
been processed successfully. To date, this message pair has been used to report updates of hotel availability
and hotel rate amount databases. The response to each of these database updates (OTA_HotelAvailNotifRS or
OTA_HotelRateAmountNotifRS) is used only to acknowledge that the message has been received (since the
update may take several minutes). In case of an error, these messages do not provide the ability to identify and
give details regarding the reason for failure.

The sequence of events to perform a database update for hotel availability or hotel rate amount information is
as follows:

• A hotel provider sends an OTA_HotelAvailNotifRQ to a booking source.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-30

• The booking source acknowledges that it has received the message (but not yet processed it) by
replying with the OTA_HotelAvailNotifRS.

• The booking source system processes the database update.
• Once the database update is completed, the booking source system may need to inform the hotel

provider whether the updates were successful.
• The booking source builds an OTA_NotifReportRQ message and sends it to the hotel provider.
• The hotel provider acknowledges it with an OTA_NotifReportRS message.

OTA_PingRQ/RS
The Ping RQ/RS message pair is intended to support testing application connectivity between systems. This is
done by sending some text in the OTA_PingRQ message and determining if the receiving application can echo
back that same text in the response message.

OTA_ScreenTextRQ/RS
This message pair may be used to request information in a free-text type of response using a terminal message
input. It will allow users who do not have fully developed XML capabilities to send and receive XML messages
and to request information for which no OpenTravel message functionality has been developed.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-31

General Technical Implementation
Previous sections of this guide introduced the OpenTravel organization, the processes used by OpenTravel to
develop and publish materials, and the specification itself. This section examines more closely various aspects
of the specification and provides specific guidance related to the implementation and deployment of
OpenTravel-based web services.

Getting Started
The mission of OpenTravel is to decrease the effort and cost associated with achieving interoperability among
travel companies and to promote new distribution channels for the OpenTravel member community. To make
the most of OpenTravel, members should devise a plan for leveraging OpenTravel as a resource for their
company. Figure 3.1-1 outlines a generic procedure that OpenTravel implementers can use as a template to
guide them through their use of the OpenTravel specification. The procedure reflects the project life cycle from
an implementers perspective; however, it omits certain topic areas that a company may need to address
internally.

Figure 3.1-1. Implementation Procedures

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-32

The sections below describe each of the steps outlined above. It’s important to note that these procedures may
contain several steps similar to those described in the OpenTravel specification release process. The latter
reflects procedures limited to OpenTravel. The list shown, however, reflects the project lifecycle from an
implementer’s perspective.

Get Involved

Understand OpenTravel Resources
The first step to leveraging OpenTravel is to understand how the organization is structured and the variety of
resources it has to offer. Familiarity with the organization will allow a travel company to monitor the
appropriate work group or project team, and will ensure that a travel company takes full advantage of
OpenTravel. This guide outlines those resources.

OpenTravel Webinars

New OpenTravel members should participate in a new member orientation meeting or one of the webinars
hosted by OpenTravel:

Introduction to OpenTravel

This webinar provides an operational overview of OpenTravel for those individuals who are new to
OpenTravel and unfamiliar with its processes. This webinar is open to members and non-members.
Topics to be covered include:

• Organizational structure
• Work groups and project teams
• Specification release process
• Current and upcoming projects
• Resources
• How to participate

Introduction to OpenTravel Schema

This webinar provides an introduction to the use of OpenTravel schema and architecture to developers,
engineers and architects who would like to become more familiar with OpenTravel's message structure.
The content of this webinar is based on the OpenTravel Implementation Guide. This webinar is open to
members-only. Topics to be covered include:

• Schema types
• Message architecture
• Namespaces
• Enumerations and code lists
• Message exchange patterns
• Attributes & elements
• OpenTravel schema design best practices

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://opentravel.org/News/ArticleView.aspx?ArticleID=59
http://opentravel.org/News/ArticleView.aspx?ArticleID=59
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-33

OpenTravel Forum

OpenTravel has an extensive discussion Forum to provide an implementation resource for users of its schema,
called the OpenTravel Forum, which has all the functionality members expect from a full-featured discussion
board, with forums for: Architecture, Hospitality, Transport, Travel Services, Tours and Activities and
Implementers Discussion. This is a great resource for asking a planning or implementation question, accessing
OpenTravel documentation, subscribing to an OpenTravel mailing list, and seeing OpenTravel-Enabled tools amd
products.

Figure 3.1-2. The OpenTravel Forum

For employees of OpenTravel member companies, there are several members-only discussion forums that are
moderated by individuals who have in-depth experience with OpenTravel schema and their implementation in
production environments. Members can post a question and get a response from a moderator within 24 hours
(Monday to Friday). Also included are OpenTravel documentation, mailing list subscription, events and
announcements, and feedback boards, as well as the OpenTravel Showcase where companies that provide

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.opentravelcommunityforum.com/forum/viewforum.php?f=15
http://www.opentravelcommunityforum.com/forum/viewforum.php?f=15
http://www.opentravelcommunityforum.com/forum/viewforum.php?f=10
http://www.opentravelcommunityforum.com/forum/viewforum.php?f=9
http://www.opentravelcommunityforum.com/forum/viewforum.php?f=9
http://www.opentravelforum.com/
http://www.opentravelforum.com/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-34

tools, services or technologies to assist in the implementation of OpenTravel schemas can post about their
offerings.

OpenTravel Wiki

The OpenTravel wiki serves as the knowledge base for the development and implementation of the OpenTravel
specification. It promotes collaboration among project teams and provides an open forum for both members
and implementers. On the OpenTravel wiki, you can access specification development and implementation
resources and access the OpenTravel Calendar and Publication Schedules.

OpenTravel Message Users Guide

In March of 2010, in conjunction with the 2010A Publication, a new OpenTravel Message Users Guide (MUG) is
included in the specification download. The MUG has been significantly redesigned (and streamlined) to
support all cycles of an OpenTravel-enabled system implementation, from design to system testing. In addition
to updated message descriptions, the new MUG provides:

• A point-and-click index of business functionality and use cases for each message, allowing an
implementer to quickly identify the OpenTravel messages that suit their own and their trading partner
business requirements,

• Links to each message data dictionary that allow implementers to see the names and descriptions of
each element and attribute in a message and the enumeration values where applicable (this allows an
analyst or developer to see the message data elements without having to load the message into a tool
like XMLSpy),

• Extended message scenario use cases that help implementers understand the range of business
scenarios that can be accomplished per message,

• An updated “Introduction and Getting Started” section that includes links to OpenTravel
implementer/member resources, OpenTravel schema architecture basics, and links to all third party
standards referenced in OpenTravel messages, such as ABTA, IATA and ISO standards to help
implementers understand the relationships between OpenTravel messages and other third party
standards, and,

• Point-and-click access to online message sample use case instances that allow an implementer to
access only the sample instances they require.

Online XML Schemas

Beginning with the 2003B release, OpenTravel began deploying each XML schema to the web as a publicly
available URL. These schemas were not intended for production use by implementers, but rather for human
reference. The intent of this is to offer users a slightly more convenient reference since each XML schema can
be referenced readily via any Internet browser. The following URL is an example of this format:
http://www.opentravel.org/2006B/OTA_AirAvailRQ.xsd. The online schemas are not intended to serve as an
XML schema registry for validation purposes by development, test, or production systems.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://wiki.opentravel.org/index.php?title=Calendar
http://wiki.opentravel.org/index.php/Main_Page
http://wiki.opentravel.org/index.php/Main_Page
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-35

OpenTravel Website

The OpenTravel website is a great resource for understanding more about OpenTravel's mission, downloading
an OpenTravel Specification, signing-up for an OpenTravel webinar, viewing OpenTravel news & events and
submittting comments against the current OpenTravel Specification.

OpenTravel Alliance on Linked In

The OpenTravel Alliance group on Linked In is comprised of individuals from the travel industry and a great
resource for travel industry news and events as well as discussions about emerging trends in the travel industry.

OpenTravel Mailing Lists

OpenTravel maintains a number of mailing lists that inform members of upcoming conference calls and
meetings. Membership of relevant mailing lists is also critical for participating in and staying up to date with
OpenTravel's specification development. If you have not received a notice of membership from any of the
mailing lists or would like to add additional contacts, then please contact the OpenTravel Specification Manager
with your request. Users with access to the OpenTravel wiki members-only pages can sign up for mailing lists
themselves.

Identify OpenTravel Roles and Contacts
The OpenTravel specification is developed by direct involvement from member company resources, so a clear
assignment of roles and responsibilities of those individuals is critical to leveraging the various benefits that
OpenTravel has to offer.

It is beneficial for member companies to have both technical and non-technical (such as business managers and
product analysts) join the monthly OpenTravel Workgroup calls and participate in OpenTravel project teams.

Once you have identified your company participants, you may want to sign up for the OpenTravel Forum,
OpenTravel wiki and sign up for one or more OpenTravel mailing lists.

Participate

When necessary, OpenTravel members should champion a project team to ensure that their business
requirements are incorporated into the specification. The ‘Introduction’ and ‘General Functional
Implementation’ sections of this guide outline how work gets done in OpenTravel. Members should participate
actively with OpenTravel committees, subcommittees, work groups and project teams to ensure that
OpenTravel meets their company’s needs.

Identify Functional Requirements

Document Business Process Flow
First and foremost, the OpenTravel specification is primarily a set of data specifications that enable the
automated exchange of data. From the perspective of a specific company, each data exchange will be executed

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://tinyurl.com/yf645tr
http://wiki.opentravel.org/
http://www.opentravelforum.com/
http://tinyurl.com/yf645tr
http://tinyurl.com/yf645tr
http://tinyurl.com/y892g5e
http://www.linkedin.com/groups?gid=1053987
http://opentravel.org/Specifications/CommentOnSpec.aspx
http://opentravel.org/Default.aspx
http://opentravel.org/News/ArticleView.aspx?ArticleID=59
http://opentravel.org/Specifications/Default.aspx
http://opentravel.org/Specifications/Default.aspx
http://opentravel.org/AboutUs/Default.aspx
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-36

within the context of a particular business process. That process may affect the information exchange
requirements, so OpenTravel implementers should consider how new or existing OpenTravel messages operate
within the context of a given process. To date, OpenTravel has not issued any formal business processes with
the specifications.

Identify OpenTravel Messages
Once the business process context is established, a company can identify OpenTravel messages to be used for a
particular application. The OpenTravel specification is comprised of more than 240 XML schemas that apply to a
number of industry segments. To help you identify the messages that meet your business requirements,
OpenTravel has created a list that contains each message, its message category (e.g. Air, Car, Travel Insurance)
and its business functionality. In addition, a list of use cases that are contained in the OpenTravel Message
Users Guide can be obtained here.

Identify Reusable Content
When a company identifies a need to develop a new OpenTravel message, it will propose a project to the
appropriate work group (see procedures below). The “Reuse” section of the project team proposal (PTP)
document provides a place for the project champion to identify constructs (complex types, simple types,
attributes) that they plan to reuse within the new message. If the data requirements are not yet known, a
project study is recommended prior to schema development.

Identify Non-Functional Requirements

Ensuring a Stable Architecture and Interoperability with Trading Partners
The community of organizations using OpenTravel standards is continually growing and becoming more
dynamic, compelling trading partners to coordinate with one another on a variety of IT-related issues. The
convergence of XML, web services, and service oriented architecture (SOA) further underscores the need to
coordinate with collaborators. To ensure a stable architecture over the long term, implementers should be
aware of how trading partners expose and maintain their services. Also, areas such as security, performance,
and service levels may need to be addressed.

Define Service Architecture
With a clear business process context in hand, implementers will have a solid foundation with which to define
the specific service interfaces that implement data exchange across process boundaries. Increasingly, adoption
of service oriented architecture (SOA) principles requires that companies treat each service interface as a first-
class design object. Non-functional areas such as security, trust, policy assertion and enforcement, and
orchestration will need to be considered at design time for each service. Implementers will want to leverage the
OpenTravel specification as appropriate within this service architecture.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.opentravelcommunityforum.com/OpenTravelImpGuide/OpenTravel_Messages_MUG_UseCases_v1.0.pdf
http://www.opentravelcommunityforum.com/OpenTravelImpGuide/OpenTravel_Messages_MUG_UseCases_v1.0.pdf
http://www.opentravelcommunityforum.com/OpenTravelImpGuide/OpenTravel_Messages_Business_Functionality_v1.0.pdf
http://www.opentravelcommunityforum.com/OpenTravelImpGuide/OpenTravel_Messages_Business_Functionality_v1.0.pdf
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-37

Develop the Specification

 Submit Project Team Proposal(s)
As described in the ‘Introduction’ section of this guide, a PTP is the first step of any OpenTravel project team. A
PTP is required for any new message to be developed. The submitter of the PTP will likely be the project
champion and will coordinate work with representatives from the work group and the specification
management team as appropriate. PTP templates, that contain instructions, can be downloaded from the
OpenTravel wiki.

Submit Comments
For changes to existing messages, one or more comments may be sufficient for the proposed changes,
depending on the extent of the changes requested. All comments for the current OpenTravel Publication are
submitted through the OpenTravel website.

Create Draft XML Schema
For new messages, a project champion may find it useful to submit a draft schema to the work group. This will
help flesh out ideas ahead of time, and it will also provide the group with a starting point.

Create Business Scenarios and Instances
Once a new message is developed, the project champion will submit business scenarios and associated XML
instances to the work group for review. This material will illustrate clearly how the messages are intended to
operate in a real-world environment. Submission of business scenarios and instances may also be requested for
significant changes to existing messages or a new, distinct application of an existing message.

Implement the Specification

Identify Usage Profiles
Because the OpenTravel specification is developed within a community environment, each message may be
used (at run-time) in different ways by different trading partners. This variation reflects the particular data
needs that each company has with respect to a specific, published schema and is often referred to (within
OpenTravel) as a “usage profile.” To further decrease the time required to develop service interfaces,
companies should consider documenting their own usage profiles for distribution to their trading partners.

Define Configuration Management
OpenTravel publishes two specifications per year, each of which may provide incremental and useful
functionality. As a result, many companies find themselves maintaining multiple versions of the same XML
schemas. Maintaining precise awareness and configuration control of schema versions running within a
particular environment will be critical to the success of OpenTravel -based services—particularly as the number

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://opentravel.org/Specifications/CommentOnSpec.aspx
http://opentravel.org/Specifications/CommentOnSpec.aspx
http://tinyurl.com/yc7dc37
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-38

of messages and trading partners increases.

Test Sample XML Instances
The sample XML instance documents should be tested within the software system being developed to ensure
that the data elements are validated successfully and processed appropriately.

Follow Up

Register Messages
The OpenTravel registration program provides an online forum through which OpenTravel implementers can
publicize their OpenTravel capabilities. For each registered company, this forum captures a number of data
points related to that company’s use of OpenTravel.

Provide Feedback
Inevitably, each OpenTravel implementer will identify additional data requirements not already provided within
OpenTravel XML schemas. The schemas themselves provide temporary extension points by way of
TPA_Extension elements. These elements, however, are intended to serve as a provisional means to exchange
data. Implementers who use these extensions will benefit by submitting comments to OpenTravel so that their
information requirements are incorporated into future publications.

Non-Functional Requirements
Each of the OpenTravel message-level XML schemas is designed to operate within a software system.
OpenTravel schemas play a central role in establishing interoperability between systems by defining the specific
data elements to be exchanged. In addition to these data elements, however, implementers will need to
address numerous other non-functional requirements that do not address business functionality but are,
nevertheless, critical aspects of achieving true interoperability. The extent to which travel companies address
these non-functional requirements in a similar manner will have a direct impact on how interoperable they are
with one another and, therefore, the effort they expend to build interfaces with trading partners.

To help promote a uniform interoperability landscape in the travel industry, the OpenTravel architecture work
group has issued guidance for several non-functional areas. The subsections below outline the areas that
OpenTravel has addressed. They also include some non-functional requirements that OpenTravel has not
addressed, but that OpenTravel implementers will likely need to address.

Payload Transaction Management
Commonly, the first encounter that an OpenTravel specification user has with non-functional requirements is
within the root element of each message. The root element of each message level schema refers to the
OTA_PayloadStdAttributes attribute group. This attribute group is defined in the OTA_CommonTypes file and
contains attributes that, collectively, support common transaction management requirements. At run-time,

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://opentravel.org/Specifications/CommentOnSpec.aspx
http://opentravel.org/MembersOnly/RegistrationProgram.aspx
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-39

these attributes operate within the XML payload rather than the envelope layer. Implementers should consider
carefully their use of these fields as compared to fulfilling the same functionality by way of the message
envelope. Figure 3.2-1 depicts the appearance of this attribute group when viewed in an XML schema editor.

Figure 3.2-1. OTA_PayloadStdAttributes

• EchoToken. The value of this attribute is assigned by a requesting system and serves as a reference for
messages that may follow an initial request. When a request message includes an echo token, the
corresponding response message must include an echo token with an identical value. This makes it
possible for two or more messages to be correlated together as part of a single transaction.

• TimeStamp. This date and time value specifies the creation date and time of a message. This value is
UTC format specified by ISO 8601—YYYY-MM-DDThh:mm:ssZ—with time values using the 24-hour
clock (e.g., 20 November 2003, 1:59:38 p.m. UTC becomes 2003-11-20T13:59:38).

• Target. This enumerated attribute indicates whether a request message is targeted at a test or
production system.

• Version. This decimal value identifies the specific version of the OpenTravel XML schema associated
with an XML instance document. This value makes it possible for trading partners to maintain several
versions of the same schema and correlate instances to the appropriate version.

• TransactionIdentifier. This value uniquely identifies a transaction and all messages that make up that
transaction. This value would be sent in all request and response messages that are part of an ongoing
transaction.

• SequenceNumber. This integer value identifies the sequence number of a transaction. This allows for
an application to process messages in a certain order or to request a resynchronization of messages in
the event that a system has been offline and needs to retrieve messages that were missed.

• TransactionStatusCode. This enumerated attribute indicates where this message falls within a
sequence of messages (Start, End, Rollback, InSeries).

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-40

• PrimaryLangID. The language code associated with this attribute indicates the primary language for
content provided within an XML instance document. The ability for a message sender to request a
particular language within the response message is not supported by OTA_PayloadStdAttributes.

• AltLangID. The language code associated with this attribute specifies the secondary language for
content provided within an XML instance document.

• RetransmissionIndicator. This boolean attribute indicates whether a message is being re-sent due to a
previously failed attempt to transmit a message.

Figure 3.2-2 below depicts a sample XML instance document (OTA_VehLocDetailsNotifRQ) and its use of several
attributes contained within the OTA_PayloadStdAttributes attribute group.

Figure 3.2-2. OTA_PayloadStdAttributes Example

State Maintenance
In general, OpenTravel messages were designed to support transactions that occur within a stateless
environment. Within the messages, this is reflected by a tendency to include data in the response that is
defined also in the request. With this design, message senders and recipients are not forced to “remember”
data between message sends.

As an example of this design philosophy, Figure 3.2-3 below depicts the OTA_AirAvailRQ and OTA_AirAvailRS as
they appear in an XML schema editor. For each message, the highlighted element OriginDestinationInformation
contains content that is similar across the request and response message.

Please note that a number of OpenTravel messages are intended for use within legacy environments that do
maintain state. As a result, those schemas do not include data elements in the response that were in the
request.

Message Transport
Historically, the primary work of OpenTravel has been to provide a data exchange specification for the travel
industry. As use of the specification increased, however, the implementer community began expressing a need
for OpenTravel to also provide guidance regarding how these schemas should be used within real-world
software applications.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-41

The OpenTravel architecture work group responded to these requests by launching projects to provide
guidance about nonfunctional areas such as HTTP, SOAP, and WSDL. As is the case with the schemas, guidance
documentation for these areas will be maintained over the long term to reflect changing needs and a
continually evolving standards and technology market.

While OpenTravel recognizes that these standards are developed and maintained by the W3C, it also recognizes
that it can help reduce efforts associated with interoperability in the travel industry by publishing
implementation guidance documents that help travel companies implement web services in a consistent
manner. The sections below provide guidance for using OpenTravel XML schemas in conjunction with the SOAP
and HTTP messaging protocols.

Figure 3.2-3. OTA_AirAvail Message Pair

Definitions and Conventions
Each of the sections in Chapter 3 provide guidelines regarding the use of a technology in conjunction with the

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-42

OpenTravel specification. Guidelines may be denoted by the symbol ‘§’. Since this document is recommended
guidance and not an enforceable requirement (from the perspective of OpenTravel), the guidelines herein make
use (primarily) of SHOULD nomenclature.

The key words "MUST," "MUST NOT," "REQUIRED," "SHALL," "SHALL NOT," "SHOULD," "SHOULD NOT,"
"RECOMMENDED," "MAY," and "OPTIONAL" in this document are to be interpreted as described in IETF
document RFC 2119.

In other words, "MUST," "MUST NOT," "REQUIRED," "SHALL," and "SHALL NOT" identify protocol features that
are not optional.

Similarly, "SHOULD," "SHOULD NOT," "RECOMMENDED," "MAY," and "OPTIONAL" identify statements that
require consideration with regard to the impact that inclusion or exclusion of the protocol feature will have on
the interoperability of the system.

SOAP Messaging
SOAP is a loosely coupled protocol for interaction between applications that may have been developed on
different platforms using different languages. SOAP uses XML for payload and a wide range of underlying
protocols for transport - one of them being HTTP.

Earlier proprietary protocols required client and server applications to be of the same breed, use a common
protocol framework or at least run on the same platform. With the introduction of SOAP, this tight coupling
between client and server applications was eliminated and applications could communicate across platform
and language barriers.

Many applications are already using SOAP for the interchange of OpenTravel documents, and more are in the
process of being developed. Until now there have not been any guidelines or specifications describing how
OpenTravel documents should be encapsulated and transported in SOAP messages. This has prevented many
existing applications from inter-operating, even when these applications conform to the SOAP and OpenTravel
specifications. This section aims to bridge that gap and acts as guide to software architects and developers who
want to create interoperable OpenTravel clients and services using SOAP.

Purpose
The main purpose of this section is to provide well-defined guidelines for creating and using OpenTravel
services over SOAP in a manner that ensures interoperability. The goal is that any party that develops
OpenTravel-based services in accordance with this section should be able to interoperate without having to
implement any changes in SOAP/OpenTravel message structure or at a protocol level. This section also attempts
to outline the simplest method of transmitting OpenTravel messages over SOAP. With simplicity comes ease of
implementation and in most cases also efficiency. OpenTravel recommendation of these guidelines will help to
ensure wide distribution amongst implementers within the travel industry.

The SOAP Transport Protocol
Microsoft started working on the SOAP specification as early as 1998, and a specification was first released in
late 1999. This specification used a sub-set of the then in-progress XML Schema specification. SOAP was initially

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-43

intended as a replacement for existing RPC protocols such as GIOP/IIOP, DCE/DCOM, RMI, and ONC, but has
also developed into a document exchange transport mechanism with similarities to EDI. SOAP was submitted to
W3C’s XML Protocol Working Group in 2000. SOAP was released as a “Note” from W3C in May 2000.

SOAP provides a simple and extensible vehicle for interchanging data and invoking remote services using XML,
as demonstrated by the skeleton SOAP structures in Figures 3.2-4, 3.2-5 and 3.2-6:

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<!-- Routing, security or other control data. -->
</soap:Header>
<soap:Body>
<!-- RPC method call or document data. -->
</soap:Body>

</soap:Envelope>
Figure 3.2-4. Skeleton SOAP response

The only limitation to the content of the SOAP Body element is that it must be a valid XML document. This
implies that the content is a single XML element, which either represents a remote service/method or is the
root element of an XML document that is being exchanged.

The Header element is optional in all SOAP messages and is used to carry information apart from the actual
envelope payload – such as routing or security information.

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<!-- Routing, security or other control data. -->
</soap:Header>
<soap:Body>
<!-- RPC method response or document data. -->
</soap:Body>

</soap:Envelope>
Figure 3.2-5. Skeleton SOAP positive response

The same limitation with regard to the content of the SOAP Body element applies to positive SOAP response
messages.

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<!-- Routing, security or other control data. -->
</soap:Header>
<soap:Fault>
<faultcode>soap:Client.AppError</faultcode>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-44

<faultstring>Application Error</faultstring>
<detail>

<message>Something went wrong</message>
<errorcode>12345</errorcode>

</detail>
</soap:Fault>

</soap:Envelope>
Figure 3.2-6. Skeleton SOAP negative response

Negative response messages contain a Fault element in place of a Body element.

The Need for Interoperability
SOAP is already being widely used for transporting OpenTravel documents. However, due to the dual purpose
of SOAP (RPC vs. messaging) and SOAP’s flexibility with regards to structure, a whole range of SOAP structures
are being used to transport OpenTravel data.

Many travel companies expose OpenTravel or OpenTravel -like services using SOAP, with different
implementation approaches:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<OTA_CancelRQ xmlns="http://www.opentravel.org/OTA/2003/05" Version="2.001">
<POS>
 <Source ISOCountry="US" ISOCurrency="NOK" PseudoCityCode="HUR">

<RequestorID ID="abc.123" URL="abcde..."/>
 </Source>
</POS>
<UniqueID ID="DGNJ6012990-389" Type="14"/>

</OTA_CancelRQ>
</soap:Body>

</soap:Envelope>
Figure 3.2-7. SOAP Messaging

Using SOAP messaging, the OpenTravel payload is the only and immediate child of the SOAP Body element. This
is the simplest and most efficient means of transporting OpenTravel messages over SOAP.

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <acme:otaServiceCancel xmlns:acme="http://www.acme-travel.com">
 <OTA_CancelRQ xmlns="http://www.opentravel.org/OTA/2003/05" Version="2.001">
 <POS>
 <Source ISOCountry="US" ISOCurrency="NOK" PseudoCityCode="HUR">
 <RequestorID ID="abc.123" URL="abcde..."/>
 </Source>
 </POS>
 <UniqueID ID="DGNJ6012990-389" Type="14"/>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-45

 </OTA_CancelRQ>
 </acme:otaServiceCancel>
 </soap:Body>
</soap:Envelope>

Figure 3.2-8. SOAP RPC

With SOAP RPC the immediate child of the SOAP Body element is an XML element that describes the method or
function that is being invoked, in this case “otaServiceCancel”. The namespace of this element is most often
defined by the service application (it is not the OpenTravel namespace).

Accept-Language: en
Content-Type: multipart/related; type="text/xml"; boundary="----…"
Content-Id: soap-envelope
Content-Length: 923
SOAPAction: OTA_CancelRQ
User-Agent: Acme SOAP Client

-----=Multipart_Boundary_1136385692441_3=----
Content-Type: text/xml
Content-Id: soap-envelope

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <acme:otaServiceCancel xmlns:acme="http://www.acme-travel.com">
 <acme:payload location="cid:OTA_CancelRQ"/>
 </acme:otaServiceCancel>
 </soap:Body>
</soap:Envelope>
-----=Multipart_Boundary_1136385692441_3=----
Content-Type: text/xml; charset="UTF-8"
Content-Id: OTA_CancelRQ

<OTA_CancelRQ xmlns="http://www.opentravel.org/OTA/2003/05" Version="2.001">
 <POS>
 <Source ISOCountry="US" ISOCurrency="NOK" PseudoCityCode="HUR">
 <RequestorID ID="abc.123" URL="abcde..."/>
 </Source>
 </POS>
 <UniqueID ID="DGNJ6012990-389" Type="14"/>
</OTA_CancelRQ>

Figure 3.2-9. SOAP RPC with Attachment

All the above are taken from real-world use of SOAP for interchange of OpenTravel messages. There is nothing
inherently wrong with any of these methods; they all use SOAP to carry OpenTravel messages, but they are not
interchangeable.

The need for a well-defined specification in this area is obvious due to the increased use of OpenTravel
messages, an increasing number of SOAP-based OpenTravel services, and the variety of SOAP structures that
can be used to carry OpenTravel messages.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-46

This section describes a set of guidelines for a uniform method of using SOAP for interchange of OpenTravel
messages. These guidelines do not, in any way, state that OpenTravel services or clients must use SOAP for
transport, nor must they conform to these guidelines. This section provides guidelines that can be used to
maximize interoperability with other SOAP-based OpenTravel clients and services.

Scope

This section contains guidelines for interchange of OpenTravel documents/messages using the SOAP protocol.

This section is not intended to contain contradiction of or repetition of what is already stated as rules or
guidelines in the specifications that are referenced in section 3.2.4.5.

References

Specification Location
SOAP 1.1 specification http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

SOAP 1.2 specification http://www.w3.org/TR/soap12/

SOAP with attachments http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211

WS-I basic profile http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

WS-Security specification http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

XML-Signature specification http://www.w3.org/TR/xmldsig-core/

XML-Encryption specification http://www.w3.org/TR/xmlenc-core/

WSDL 1.1 recommendation http://www.w3.org/TR/wsdl

Philosophy of Interoperability
For maximum interoperability, your system SHOULD be liberal in what it accepts and strict in what it emits.

SOAP Version 1.1 and 1.2
SOAP version 1.1 was released as a “Note” from W3C in 2000. This specification had few changes from what
was submitted to W3C’s XML Protocol Working Group the same year. The main addition was a fixed namespace
(http://schemas.xmlsoap.org/soap/envelope/).

The main change in SOAP version 1.2, released as a W3C “Recommendation” in June 2003, was a change in the
namespace (now http://www.w3.org/2003/05/soap-envelope) and a change in how the SOAP Action value was
transmitted over HTTP.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmldsig-core/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
http://www.w3.org/TR/soap12/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-47

Accept-Language: en
Content-Type: type="text/xml";
Content-Length: 194
SOAPAction: GetStockQuote
User-Agent: Acme SOAP Client

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getStockQuote Ticker="SUNW"/>
 </soap:Body>
</soap:Envelope>

Figure 3.2-10. SOAP 1.1 HTTP Sample

Accept-Language: en
Content-Type: type="text/xml"; action="GetStockQuote";
Content-Length: 193
User-Agent: Acme SOAP Client

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Body>
 <getStockQuote Ticker="SUNW"/>
 </soap:Body>
</soap:Envelope>

Figure 3.2-11. SOAP 1.2 HTTP Sample

Most SOAP toolkits/stacks support both versions of SOAP. By using a standard development kit or SOAP stack
one ensures that an application will support both SOAP versions.

§ 1. OpenTravel implementers using the SOAP protocol MUST support either SOAP 1.1 or SOAP 1.2 for clients
and services.

§ 2. OpenTravel implementers using the SOAP protocol SHOULD support SOAP 1.1 and SOAP 1.2 for clients and
services.

SOAP Messaging and SOAP RPC

Differences between SOAP Messaging and SOAP RPC

The SOAP protocol can be used both for messaging (exchanging messages/documents) and for RPC (invoking
remote services). The structure of the SOAP Envelope, Header and Body elements are the same for both
paradigms, but the content of the SOAP Body element is different.

When using SOAP messaging for document exchange, the content of the SOAP Body element is a document or

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-48

message that is sent from one party to another. This document or message is the only content inside the SOAP
Body, and the root element of the document or message is the only immediate child element of the SOAP Body
(i.e., you cannot transmit more than one document inside a single SOAP Body element). The exchanged
document or message is often defined using an XML schema that is either agreed upon between the two SOAP
parties or defined by a standards body (such as OpenTravel).

When using SOAP RPC the content of the SOAP Body element describes a service invocation (a remote
procedure call). This description normally includes a procedure or function name and a set of parameters. The
parameters can be one or more XML documents or messages, so it is possible to exchange documents and
messages using SOAP RPC. The structure of the SOAP Body contents is defined on a per-service basis, and is
most often described in a WSDL document that is made available by the SOAP RPC service.

WSDL's Document/ Literal Binding

WSDL can be used to describe both RPC and document exchange services. For document exchange services, the
document/literal binding must be used (described in the W3C WSDL 1.1 specification sections 3.3 through 3.5):

<wsdl:definitions ...>
 ...
 <wsdl:binding name="mySoapBinding" type="impl:SOAPClientInterface">
 <!-- Use document style and not rpc. -->
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <!-- Define OTA_Cancel operation using OpenTravel-defined messages. -->
 <wsdl:operation name="OTA_Cancel">
 <wsdlsoap:operation soapAction="OTA_Cancel"/>
 <wsdl:input name="OTA_CancelRQ">
 <wsdlsoap:body namespace="http://www.acme.com/ota" use="literal"/>
 </wsdl:input>
 <wsdl:output name="OTA_CancelRS">
 <wsdlsoap:body namespace=" http://www.acme.com/ota " use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 ...

Figure 3.2-12. WSDL Document/Literal Binding Example

SOAP Messaging Benefits

The main benefit of using SOAP messaging for exchange of OpenTravel messages is that the content of the
SOAP Body element is always a single OpenTravel message. This means a SOAP client can use the exact same
message structure for any OpenTravel service that uses SOAP messaging. If using SOAP RPC, each OpenTravel
service would define its own SOAP message structure (procedure name, etc.), and a client would have to use a
different message structure for each SOAP RPC service.

As an example, we can consider a SOAP client that wants to issue an OTA_AirLowFareSearchRQ request to a set
of OpenTravel services: A, B and C. If using SOAP messaging, the client could construct a single SOAP envelope

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.w3.org/TR/wsdl
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-49

containing an OTA_AirLowFareSearchRQ and issue it to services A, B and C. If the services were using SOAP RPC,
the client would have to first determine the required SOAP RPC message structure for services A, B and C,
create one SOAP request for each service (containing the OTA_AirLowFareSearchRQ as a parameter) and issue
the request to each service.

SOAP Messaging vs. RPC Guidelines

The overhead of using RPC is obvious, and even more so when considering the similar complexity in handling
SOAP RPC response messages. But the main advantage to using SOAP messaging is ease of integration and
interoperation.

§ 3. OpenTravel implementers SHOULD use SOAP messaging for transmitting OpenTravel documents between a
SOAP client and a SOAP service.

SOAP Action URI

SOAP Messaging and the SOAP Action URI

The SOAP Action is a URI that is transmitted with a SOAP Envelope, separate from the envelope’s XML content.
This URI is meant to carry the intent of the SOAP message. With SOAP messaging the SOAP operation (service
name) is not included in the SOAP message. The SOAP Action can be used to send an operation name from the
client to the service in cases where the operation is not implied by the type of document that is being sent.

SOAP Intermediaries

The SOAP Action URI can also be very valuable to SOAP intermediaries, such as a SOAP gateway, router or proxy.
Intermediaries can forward or otherwise handle a SOAP message based on its SOAP Action value, without
having to parse the SOAP Envelope.

Figure 3.2-13. SOAP Intermediary

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-50

Tasks carried out by such intermediaries include:

• Routing of SOAP requests – routing based on SOAP Action value.

• XML Schema validation of SOAP request contents – XML Schema is chosen from the SOAP Action.

• XML Security token processing, such as XML Signature validation and decryption of XML Encryption
elements.

SOAP Action URI Guidelines

In scenarios where there is no SOAP intermediary there is most often no need for a SOAP Action URI. The
server application can process an incoming message purely based on the root tag of the document it receives.

§ 4. Services SHOULD NOT require a SOAP Action URI to communicate with the service.

In scenarios where SOAP intermediaries are used, a SOAP Action URI may be used for in-transit processing. A
SOAP server application may also choose to use the SOAP Action URI for internal routing (at an application
level).

§ 5. Services and intermediaries that require a SOAP Action URI SHOULD use the OpenTravel request tag root as
the SOAP Action URI. For low fares search, the SOAP Action URI would be “OTA_AirLowFareSearchRQ”.

Some SOAP intermediaries may not allow an administrator to configure the SOAP Action URI. For this reason a
SOAP Client application should allow the SOAP Action URI to be configured per service:

§ 6. Clients SHOULD support any SOAP Action URI for transmitting any OpenTravel message to a Web service.

SOAP Envelope Content
The structure of the SOAP Envelope is well defined in the SOAP 1.1, SOAP 1.2 and WS-I basic profile
specifications. WS-I basic profile section 4.1 contains a very detailed description of a properly defined SOAP
Envelope. This description does not add, remove or change any of the requirements in SOAP 1.1 or 1.2, but
offers the reader a better understanding of the SOAP Envelope structure and constraints than the SOAP
documents.

§ 7. SOAP Envelope content SHOULD conform to the SOAP 1.1 and SOAP 1.2 specifications, as clarified in WS-I
basic profile section 4.1.

SOAP Header Content
The SOAP Header element is used to carry information that is logically separate from the SOAP payload
(contents of the SOAP Body element) but that are required for the SOAP message to reach its endpoint. Such
information includes:

• Security tokens
• Routing information
• Timestamps

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-51

This element is not intended to carry all or portions of a SOAP message’s payload.

§ 8. SOAP Header elements in SOAP request and response messages SHOULD conform to the SOAP 1.1 and
SOAP 1.2 specifications, as clarified in WS-I basic profile section 4.1.

§ 9. SOAP Header elements SHOULD NOT contain OpenTravel data.

SOAP Body Content
As SOAP messaging is recommended, the content of the SOAP Body element should be a single OpenTravel
request or response message. The only immediate child element of the SOAP Body should be the root element
of an OpenTravel message.

§ 10. SOAP Body elements in SOAP request and response messages SHOULD conform to the SOAP 1.1 and SOAP
1.2 specifications, as clarified in WS-I basic profile section 4.1.

§ 11. All content within the SOAP Body element SHOULD be in the OpenTravel namespace, with the exception
of XML-Encryption tokens that are inserted in-place of encrypted OpenTravel elements.

§ 12. The content within a SOAP Body element SHOULD be valid, well-formed XML that conforms to an
OpenTravel schema.

§ 13. The only immediate child element of the SOAP Body element SHOULD be the root element of a document
that is defined in an OpenTravel schema.

SOAP Attachments
SOAP attachments are used to carry information that is in addition to the message payload.

§ 14. SOAP clients SHOULD support SOAP Attachments.

§ 15. SOAP services SHOULD limit the use of SOAP Attachments to images, such as hotel and vehicle images.

SOAP Fault vs. OpenTravel Error
SOAP 1.1 and 1.2 define the SOAP Fault element as a vehicle for transporting error information from a SOAP
service to a SOAP client. OpenTravel also defines elements for returning errors and warnings to a SOAP client.
While the SOAP Fault element is capable of indicating application-level errors, as well as errors that originate in
the SOAP stack, this document recommends that the SOAP Fault element be used only to communicate and
transport (SOAP stack) errors.

§ 16. OpenTravel SOAP services SHOULD use SOAP Fault for SOAP-level errors.

§ 17. OpenTravel SOAP services SHOULD use OpenTravel Errors for application-level errors.

§ 18. OpenTravel SOAP clients SHOULD support both SOAP Fault and OpenTravel Error handling.

§ 19. SOAP Fault response messages SHOULD conform to the SOAP 1.1 or SOAP 1.2 specifications, as clarified in
WS-I basic profile section 4.1.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-52

Examples
Most of the following examples use the OTA_ReadRQ and OTA_ReadRS messages. The messages are relatively
small and thus suitable for short and readable examples.

OTA_ReadRQ - Correct

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ota:OTA_ReadRQ xmlns:ota="http://www.opentravel.org/OTA/2003/05">
 <ota:POS>
 <ota:Source ISOCountry="CA" ISOCurrency="CAD" PseudoCityCode="AERO">
 <ota:RequestorID ID="APP.001" URL="http://www.acme.com"/>
 </ota:Source>
 </ota:POS>
 <ota:UniqueID ID="105789143" Type="21"/>
 </ota:OTA_ReadRQ>
 </soap:Body>
</soap:Envelope>

Figure 3.2-14. Correct OTA_ReadRQ Message

This example shows a correctly formatted SOAP request containing an OTA_ReadRQ message. The OTA_ReadRQ
element is the only immediate child element of the SOAP Body element. This format allows the request to be
issued to any Web service that implements the OTA_ReadRQ message as a non-RPC service.

OTA_ReadRQ - Incorrect - Escaped XML

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <acme:otaReadService xmlns:acme="http://www.acme.com/ota" Request="<ota:OTA_ReadRQ
xmlns:ota="http://www.opentravel.org/OTA/2003/05"><ota:POS><ota:Sourc
e ISOCountry="CA" ISOCurrency="CAD"
PseudoCityCode="AERO"><ota:RequestorID ID="APP.001"
URL="http://www.acme.com"/></ota:Source></ota:POS><ota:UniqueID
ID="105789143" Type="21"/></ota:OTA_ReadRQ>"/>
 </soap:Body>
</soap:Envelope>

Figure 3.2-15. Incorrect OTA_ReadRQ Message - Escaped XML

This is an RPC-type SOAP request containing a call to an “otaReadService” defined by one particular Web
Service. This OpenTravel request is serialized and passed to this service as a string. This SOAP message is tied to
this particular service and is not in accordance with the guidelines in this document.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-53

OTA_ReadRQ - Incorrect - Wrapped in Other XML

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <acme:otaReadService xmlns:acme="http://www.acme.com/ota">
 <ota:OTA_ReadRQ xmlns:ota="http://www.opentravel.org/OTA/2003/05">
 <ota:POS>
 <ota:Source ISOCountry="CA" ISOCurrency="CAD" PseudoCityCode="AERO">
 <ota:RequestorID ID="APP.001" URL="http://www.acme.com"/>
 </ota:Source>
 </ota:POS>
 <ota:UniqueID ID="105789143" Type="21"/>
 </ota:OTA_ReadRQ>
 </acme:otaReadService>
 </soap:Body>
</soap:Envelope>

Figure 3.2-16. Incorrect OTA_ReadRQ Message - Wrapped in Other XML

This message is also an RPC-type SOAP request. Even though the OpenTravel request is not serialized it is still
tied to a particular service, thus not in accordance with the guidelines in this document.

OTA_ProfileReadRS - Successful, Correct

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ota:OTA_ProfileReadRS xmlns:ota="http://www.opentravel.org/OTA/2003/05">
 <ota:Success/>
 <ota:Profiles>
 <ota:ProfileInfo>
 <ota:UniqueID ID="111240578" Type="21"/>
 ...
 </ota:ProfileInfo>
 </ota:Profiles>
 </ota:OTA_ProfileReadRS>
 </soap:Body>
</soap:Envelope>

Figure 3.2-17. Correct OTA_ProfileReadRS Successful Response

The same guideline stating that the SOAP Body element should only contain a single OpenTravel message also
applies to SOAP response messages. This message is correctly formatted, as the immediate child element of the
SOAP Body is an OpenTravel response message root element.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-54

OTA_ProfileReadRS - Unsuccessful, Correct (Application-Level Error)

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ota:OTA_ProfileReadRS xmlns:ota="http://www.opentravel.org/OTA/2003/05">
 <ota:Errors>
 <ota:Error Code="282" Status="NotProcessed" Type="10"/>
 </ota:Errors>
 </ota:OTA_ProfileReadRS>
 </soap:Body>
</soap:Envelope>

Figure 3.2-18. Correct OTA_ProfileReadRS Unsuccessful Response (Application-Level Error)

This message carries an application-level error back to the client application. Application level errors should be
reported using OpenTravel error elements.

OTA_ProfileReadRS - Unsuccessful, Correct (SOAP-Level Error)

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:MustUnderstand</faultcode>
 <faultstring>SOAP Action URI missing</faultstring>
 <faultactor>http://www.acme.com/services/ota</faultactor>
 <detail>...</detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

Figure 3.2-19. Correct OTA_ProfileReadRS Unsuccessful Response (SOAP-Level Error)

This response message carries a SOAP-level error back to the client. Such errors should not be generated by an
OpenTravel server application, but can be generated by an XML intermediary or the OpenTravel application’s
SOAP stack/API.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-55

Sample SOAP Messaging WSDL for OpenTravel

<wsdl:definitions
 targetNamespace="http://www.acme.com/ota"
 xmlns:impl="http://www.acme.com/ota"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ota="http://www.opentravel.org/OTA/2003/05">

 <!-- Import of request and response schemas. -->
 <xsd:import schemaLocation="OTA_ReadRQ.xsd"/>
 <xsd:import schemaLocation="OTA_ProfileReadRS.xsd"/>

 <!-- No additional data types should be required. -->
 <wsdl:types/>

 <!-- Define request and response message. -->
 <wsdl:message name="OTA_ReadRQ">
 <wsdl:part name="OTA_ReadRQ" element="ota:OTA_ReadRQ"/>
 </wsdl:message>
 <wsdl:message name="OTA_ProfileReadRS">
 <wsdl:part name="OTA_ProfileReadRS" element="ota:OTA_ProfileReadRS"/>
 </wsdl:message>

 <!-- Define SOAP interface. -->
 <wsdl:portType name="SOAPClientInterface">
 <wsdl:operation name="OTA_Read">
 <wsdl:input message="impl:OTA_ReadRQ" name="OTA_ReadRQ"/>
 <wsdl:output message="impl:OTA_ProfileReadRS" name="OTA_ProfileReadRS"/>
 </wsdl:operation>
 </wsdl:portType>

 <!-- Define SOAP binding for SPM. -->
 <wsdl:binding name="spmSoapBinding" type="impl:SOAPClientInterface">
 <!-- Use document style and not rpc. -->
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <!-- Define operation using defined messages. -->
 <wsdl:operation name="OTA_Read">
 <wsdlsoap:operation soapAction="ReadProfile"/>
 <!-- Use 'literal' to include OTA XML as-is. -->
 <wsdl:input name="OTA_ReadRQ">
 <wsdlsoap:body namespace="http://localhost/services/spm/spm" use="literal"/>
 </wsdl:input>
 <wsdl:output name="OTA_ProfileReadRS">
 <wsdlsoap:body namespace="http://localhost/services/spm/spm" use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <!-- Define SOAP interface with previously declared binding. -->
 <wsdl:service name="SOAPClientInterfaceService">
 <wsdl:port binding="impl:spmSoapBinding" name="spm">
 <wsdlsoap:address location="http://www.acme.com/services/ota"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

Figure 3.2-20. Sample WSDL Definition for Simple OpenTravel Service

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-56

This outlines how an OpenTravel service can be described in a WSDL document. The only data-types used in this
document are types that are already defined in OpenTravel schemas. The <binding/> element declares the
service as using the document/literal style to pass OpenTravel-defined messages as-is between the OpenTravel
client and service.

SOAP with Attachments Sample

Accept-Language: en
Content-Type: multipart/related; type="text/xml"; boundary="----=Multipart_Boundary_=----"
Content-Id: soap-envelope
Content-Length: 8967

-----=Multipart_Boundary_=----
Content-Type: text/xml
Content-Id: soap-envelope

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <OTA_HotelAvailRS xmlns="http://www.opentravel.org/OTA/2003/05">
 <Success/>
 <RoomStays>
 <RoomStay xmlns="http://www.opentravel.org/OTA/2003/05">
 ...
 <BasicPropertyInfo BrandCode="DE" ChainCode="DE" ...>
 <VendorMessages>
 <VendorMessage>
 <SubSection SubTitle="HotelImage">
 <Paragraph>
 <URL>cid:HotelPool.jpg</URL>
 </Paragraph>
 </SubSection>
 </VendorMessage>
 ...
 </VendorMessages>
 ...
 </BasicPropertyInfo>
 </RoomStay>
 </RoomStays>
 </OTA_HotelAvailRS>
 </soap:Body>
</soap:Envelope>
-----=Multipart_Boundary_=----
Content-Type: image/jpeg
Content-Id: HotelPool.jpg

 ...binary image data goes here...
-----=Multipart_Boundary_=------

Figure 3.1-21. OpenTravel Message with Hotel Image Attachment

The above example shows how a binary attachment can be returned with an OpenTravel response message.
The SOAP Envelope containing the OpenTravel response is the main part of the response message. The

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-57

OpenTravel message references an attachment using the ‘cid:’ URL prefix.

WS-Security Token Sample

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Header>
 <wsse:Security soap:actor="acme-ota-proxy" xmlns:wsse="...">
 <wsse:UsernameToken wsu:Id="morten" xmlns:wsu="...">
 <wsse:Username>morten</wsse:Username>
 <wsse:Nonce EncodingType="UTF-8">
 7h9x9UYevqMgBUzT2CXAK2oVYYU2J9PeEG0ZQniz8Tk=
 </wsse:Nonce>
 <wsse:Password Type="wsse:PasswordDigest">
 3gDnTTVAd19NqSVA0c9sl1mNJrM=
 </wsse:Password>
 <wsu:Created>2006-01-17T17:55:14Z</wsu:Created>
 </wsse:UsernameToken>
 </wsse:Security>
 </soap:Header>

 <soap:Body>
 <ota:OTA_ReadRQ xmlns:ota="http://www.opentravel.org/OTA/2003/05">
 <ota:POS>
 <ota:Source ISOCountry="CA" ISOCurrency="CAD" PseudoCityCode="AERO">
 <ota:RequestorID ID="APP.001" URL="http://www.acme.com"/>
 </ota:Source>
 </ota:POS>
 <ota:UniqueID ID="105789143" Type="21"/>
 </ota:OTA_ReadRQ>
 </soap:Body>
</soap:Envelope>

Figure 3.2-22. OpenTravel SOAP Message with WS-Security Token

This sample OpenTravel request contains a WS-Security username/password token. The SOAP Body contains
only the OpenTravel request payload, while the security token is placed in the SOAP Header. The security token
is typically processed by a SOAP proxy, such as an XML Security Gateway, while the SOAP Body content is
processed by an OpenTravel Web service. The security token and OpenTravel request are kept separate, which
helps disconnect the OpenTravel Web service from the security layer.

This example illustrates how standard WS-Security compliant implementations may be leveraged by OpenTravel
Message producers and consumers. As with all referenced specifications, the goal is to leverage these industry
standards. Please refer to the WS-Security specification for further details on this authentication method.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-58

XML-Signature Sample

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Header>
 <wsse:Security soap:actor="acme-ota-proxy" xmlns:wsse="...">
 <dsig:Signature Id="MortenJorgensen" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
 <dsig:SignedInfo>
 <dsig:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <dsig:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <dsig:Reference URI="">
 <dsig:Transforms>
 <dsig:Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
 <dsig:XPath xmlns:ota="http://www.opentravel.org/OTA/2003/05">
 ancestor-or-self::ota:UniqueID
 </dsig:XPath>
 </dsig:Transform>
 <dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <dsig:DigestValue>C33iD3LMNL0/4aSey+DdzH76Cng=</dsig:DigestValue>
 </dsig:Reference>
 </dsig:SignedInfo>
 <dsig:SignatureValue>
 nIYgIKl7D0pUKBGPhN36g/vnlNu38fRJ0uooKktbpFWsPQj8A75AXAJo4TYrssgrkJoWZOFnY8h0
 d4PDAJcbgRjFusZYRhlQ3MWEMJ/9GFnLyglNTcveskWNweuUgyz56ARHHnb6MUvEzykMV4So6zaX
 6I8I130T3/r0NaD0DLE=
 </dsig:SignatureValue>
 <dsig:KeyInfo>
 <dsig:KeyName>CN=Morten Jorgensen,O=OpenJaw,...,C=IE</dsig:KeyName>
 </dsig:KeyInfo>
 </dsig:Signature>
 </wsse:Security>
 </soap:Header>

 <soap:Body>
 <ota:OTA_ReadRQ xmlns:ota="http://www.opentravel.org/OTA/2003/05">
 <ota:POS>
 <ota:Source ISOCountry="CA" ISOCurrency="CAD" PseudoCityCode="AERO">
 <ota:RequestorID ID="APP.001" URL="http://www.acme.com"/>
 </ota:Source>
 </ota:POS>

Figure 3.2-23. Signed OpenTravel SOAP Message

This sample OpenTravel request has an XML Signature element, which contains a digital signature over the
OpenTravel payload. Again, the SOAP Body contains only the OpenTravel request payload, while the security
token is placed in the SOAP Header. The security token is typically processed by a SOAP proxy, such as an XML
Security Gateway, while the SOAP Body content is processed by an OpenTravel Web service. The security token
and OpenTravel request are kept separate, which helps disconnect the OpenTravel Web service from the
security layer. Please refer to the XML-Signature and WS-Security specifications for further details.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.w3.org/TR/xmldsig-core/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-59

XML-Encryption Sample, Correct

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Header>
 <wsse:Security soap:actor="acme-ota-proxy" xmlns:wsse="...">
 <enc:EncryptedKey xmlns:enc="..." Encoding="utf-8" MimeType="text/xml">
 <enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5">
 <enc:KeySize>256</enc:KeySize>
 </enc:EncryptionMethod>
 <dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
 <dsig:KeyName> CN=Morten Jorgensen,O=OpenJaw,...,C=IE</dsig:KeyName>
 </dsig:KeyInfo>
 <enc:CipherData>
 <enc:CipherValue>
 I6kwMqpERPpbYoKa2lc/7g4kOuT/ntbpkXbRTX0VQFs6NYOcGItuvpB9qrCe4XKb
 FKsePNOMQmUQQjSzZvIfzhLDst01NZaHCVRZ8FBAGiAWTH06ZPZEDc10WObcy+Y6
 hWJ4Gd0XpDTmaUc3pRei18iWZOYz9no6PjyfJDThIQI=
 </enc:CipherValue>
 </enc:CipherData>
 <enc:CarriedKeyName>session-key</enc:CarriedKeyName>
 </enc:EncryptedKey>
 </wsse:Security>
 </soap:Header>

 <soap:Body>
 <ota:OTA_ReadRQ xmlns:ota="http://www.opentravel.org/OTA/2003/05">
 <ota:POS>
 <ota:Source ISOCountry="CA" ISOCurrency="CAD" PseudoCityCode="AERO">
 <ota:RequestorID ID="APP.001" URL="http://www.acme.com"/>
 </ota:Source>
 </ota:POS>
 <enc:EncryptedData xmlns:enc="..." Encoding="utf-8" MimeType="text/xml"
 Type="http://www.w3.org/2001/04/xmlenc#Element">
 <enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc">
 <enc:KeySize>256</enc:KeySize>
 </enc:EncryptionMethod>
 <dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
 <dsig:KeyName>session-key</dsig:KeyName>
 </dsig:KeyInfo>
 <enc:CipherData>
 <enc:CipherValue>
 fcU3IOeBS/wPKxJgPimX/apgGMnfKjF/hYOceAVLz6avzEn97xV/ipBlMLDTilef
 q4NJWQiwJyqWzXjCQFVEp+OTFav29m6NMc336psfZbpBXLXjNTGBtslVYZ0G2l4P
 FKLFua4nljlr5ve8vxn/AA==
 </enc:CipherValue>
 </enc:CipherData>
 </enc:EncryptedData>
 </ota:OTA_ReadRQ>
 </soap:Body>

</soap:Envelope>

Figure 3.2-24. Encrypted OpenTravel Sample SOAP Message

XML-Encryption tokens are the only type of security token that is inserted in-place of the SOAP payload (in this
case an OpenTravel Request). XML-Encryption tokens are typically used when the message travels across one or
more SOAP intermediaries or is processed by multiple Web service that need access to only certain parts of the

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-60

request. Exchange of encrypted XML normally follows these steps:

• A SOAP client typically creates the request as clear-text XML. The sensitive portions of the request are
encrypted either by the SOAP client itself or by a proxy that resides inside the local network of the
SOAP client. The SOAP request is encrypted using the public key of the Web service it is intended for.

• The SOAP request can then safely travel across a public network.
• The SOAP request is typically decrypted by an XML Security Gateway before it is forwarded to the Web

service. The XML Security Gateway decrypts the SOAP request using the public key of the Web service.

The key point to note is that both the client and service handle OpenTravel messages in clear text, while the
encryption proxy and security gateway handle the encryption and decryption processes. This allows the client
and server to be implemented as if SOAP messages are transmitted in clear text.

Figure 3.2-25. XML Encryption Scenario

Please refer to the XML-Encryption specification for further details.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.w3.org/TR/xmlenc-core/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-61

HTTP Messaging

Background

2001C OpenTravel Infrastructure Guidelines

The 2001C OpenTravel Infrastructure guidelines were added to the OpenTravel specifications in the 2001C
release. These guidelines included design goals, XML best practices, the concept of using flexible
request/response message pairs, and the use of ebXML as a transport protocol for passing these messages. The
specification of the transport protocol was not formally part of the OpenTravel specification because
OpenTravel members wished to maintain flexibility with regard to which transport protocol they used.

Design Goals of OpenTravel (2001C)

In 2001, the Design Goals were stated as follows:

OpenTravel's basic goal is to design industry specifications capable of exploiting the communications systems
that are available with Internet connectivity. To achieve these goals, OpenTravel has designed specifications to
meet the following criteria:

• Openness- OpenTravel specifications are publicly available to all organizations seeking to develop new
or enhanced systems. Membership to OpenTravel is open to all organizations interested in developing
these specifications.

• Flexibility- OpenTravel specifications provides travel service providers with the flexibility they need to
develop, test and deploy new services. The specifications outline the minimum necessary functionality
to provide reliable interactions between customers and the systems owned and maintained by the
companies serving them.

• Platform Independence- OpenTravel has developed this specification to work with any equipment or
software that can support the common standards used in the specification.

• Security- OpenTravel places great importance on the need to protect information from unauthorized
access and the need to give the customer control over the creation, update and exchange of data with
other parties.

• Extensibility- OpenTravel plans to add more services and functionality to this specification in a way that
minimizes incompatibility for those implementing this or other early versions. OpenTravel work groups
that develop the specifications do so with future transitions in mind.

• International scope- The initial specification was written in English; however, OpenTravel intends to
extend later versions to provide representation in character sets supporting the Unicode standard.
When possible, OpenTravel has designed data elements to meet as many global elements as possible.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-62

The Need for Interoperability

Emerging Trends

Since 2001, many new members have joined OpenTravel and want to know how to build systems that
interoperate with other vendors who have implemented OpenTravel messages. Within the travel industry, many
more integrators and intermediaries have emerged that wish to work with many partners. Decreasingly, the
emphasis is on enabling implementation of interactions between individual pairs of trading partners and
increasingly on creating services that interoperate with all interested trading partners.

Furthermore, recent OpenTravel message registrations have indicated that a simple transport protocol based on
an HTTP POST is increasingly popular.

These two trends suggest that a new specification is appropriate. This section describes this specification. It
provides the guidance necessary to create interoperable applications based on a reference transport protocol.

It should not be construed that companies are any less OpenTravel conformant if they choose a different
transport protocol. This specification serves simply as guidance for companies wishing to make OpenTravel
conformant applications that are highly interoperable.

New Design Goals

This HTTP transport protocol reference section addresses the following design goals in response to emerging
trends:

• Interoperable- Companies developing OpenTravel conformant systems should have sufficient guidance
to build systems which are highly interoperable with systems built by other companies using the same
OpenTravel messages for the same use cases.

• Simple- To be able to reach the most partners, operating from the most platforms, the protocol would
do well to be as simple as possible. This also reduces the hurdles for new members to implement
OpenTravel messages in their systems.

• Optimal Performance- The OpenTravel HTTP transport protocol should not impede performance by
burdening the processing with unnecessary overhead.

• Readily Accepted- The OpenTravel HTTP transport protocol should reflect what member companies are
already doing, thus assuring broad acceptance of the specification.

The following additional design goal is desirable, but is not directly addressed by this document:

• Certifiable- Companies should have some means whereby they can certify (for their own benefit) that
they have done what it takes to give their system a good chance of interoperating with other
companies’ systems.

Requirements for Interoperability

True interoperability is a lofty goal. A reference transport specification is necessary but not sufficient to achieve
it. The following are identified as important to achieving true interoperability:

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-63

• Standard Usage Profiles- OpenTravel messages are very flexible. However, if a set of systems are to be
interoperable with each other, they must use the selected OpenTravel messages in the same way for a
specific use case. OpenTravel plans to support the definition by member companies of Usage Profiles as
examples of OpenTravel messages, restricted to support a specific use case. Interoperability will require
that a set of Usage Profiles emerge that are generally accepted.

• Standard Transport Protocol- This document describes the OpenTravel Reference Transport Protocol.
For purposes of interoperability, it may serve as the standard.

• Standard Software Validation Suite- To have any confidence that a system will interoperate with other
systems, it must be exercised by a test suite to certify its features comply with the standards. The
production of software is currently beyond the scope of efforts sponsored by OpenTravel.

OpenTravel Transport Protocol Reference: HTTP

Philosophy of Interoperability

For maximum interoperability, your system SHOULD be liberal in what it accepts and strict in what it emits.

Simple HTTP POST vs. ebXML

The prior recommendations regarding ebXML are still available for companies wishing to implement that
transport protocol. However, OpenTravel acknowledges that adoption of ebXML among OpenTravel member
companies has been limited and that the following alternate protocol based on a simple HTTP POST represents
a simpler method to create interoperable systems.

Other transport protocol references may be specified in future OpenTravel releases. Such specifications may
include (but are not limited to) SOAP (Simple Object Access Protocol).

Standard HTTP

Nothing in this specification should be understood to override or alter the standard definition of the HTTP
protocol. The HTTP/1.0 and HTTP/1.1 versions of the HTTP protocol are described in the following documents:

HTTP/1.0 – http://www.ietf.org/rfc/rfc1945.txt

HTTP/1.1 – http://www.ietf.org/rfc/rfc2616.txt

However, the design of HTTP accommodates extensions through the use of custom headers. Custom headers
that are defined for OpenTravel transactions are described below.

HTTP Message Content

The OpenTravel transport protocol reference is based on a simple HTTP POST transaction. An HTTP POST
transaction allows for an arbitrarily large amount of “content” to be sent with both the request and with the
response. An OpenTravel request message is sent as the “content” in an HTTP POST request, and an OpenTravel
Response message is received in response.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-64

HTTP Message Headers

In addition to the “content”, an HTTP message (request or response) also carries HTTP “headers.” The goal of
the following description of headers is to describe maximum simplicity and interoperability using HTTP. If a
system developer uses any standard HTTP-handling libraries or components, these details should be handled
automatically for them.

Both clients and servers MUST support HTTP/1.0. They MAY support HTTP/1.1, but if they do, they MUST
support the client/server negotiation that allows the server to downgrade to HTTP/1.0 if the client cannot
support HTTP/1.1.

Different headers are allowed (or required) based on whether referring to the client (requestor) or server
(responder) and whether using HTTP/1.0 or HTTP/1.1.

The only HTTP header REQUIRED for both request and response is the “Content-length” header. This allows
systems that implement the HTTP protocol themselves to be written simply. If HTTP/1.1 is used, the request
requires the “Host” header (a requirement of HTTP/1.1 itself). Other headers may be useful, but they are not
required, and they may be safely ignored.

Header Description Example

Content-length [REQUIRED] Tells how many bytes are in the “content”
(after the “headers”)

Content-length: 1558

Host [REQUIRED for HTTP/1.1 Client according to HTTP/1.1
spec] This allows a server which is hosting multiple
virtual domains to know which domain the request was
for. If the server is not hosting multiple virtual domains,
the server MAY ignore this header.

Host: www.travelco.com

Connection [OPTIONAL] Systems SHOULD utilize this header, but
they MUST be robust when communicating with another
server that does not recognize it. Using “Close” means
that the network socket will be closed after the
exchange of a single message (headers and content).
“Keep-alive” means that the network socket will be kept
open for a short time in case additional transactions are
to be sent on the same socket. “Close” is the default for
HTTP/1.0, and “Keep-alive” is the default for HTTP/1.1.

Connection: Close

Connection: Keep-alive

Accept-charset [OPTIONAL] This tells a server what character sets the
client can handle. The server MAY ignore this if it will
only be responding with ASCII text. However, if it might
be responding with any non-ASCII text, it MUST encode
the data in accordance with one of the acceptable

Accept-charset: utf-8

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-65

Header Description Example

character sets. “utf-8” is the preferred character set
because XML is specified to support Unicode, and “utf-
8” is widely supported (and is ASCII-compatible). If the
header is supplied by the client, it MUST include “utf-8”.
If the header is not supplied, the server should assume
“utf-8”. In this way, both client and server should
support “utf-8” and the content in both request and
response can be understood to be “utf-8”.

Accept [OPTIONAL] This tells a server what Content-types the
client can handle. The server SHOULD ignore this,
because it is going to respond with an XML OpenTravel
response message regardless of what the client says he
can accept. The client MAY produce this header, but if
so, it SHOULD include at least one of the “xml” content
types.

Accept: text/xml

Accept: application/xml

Accept: application/xhtml+xml

Accept: text/html, text/plain

Accept-language [OPTIONAL] This tells a server what languages the client
can handle.

Accept-language: en-us, en

Accept-encoding [OPTIONAL] This tells a server whether the response
content can be compressed or not. Clients and servers
SHOULD implement a compressed encoding, but they
MUST support the standard HTTP negotiation that
allows them to interoperate with systems that do not
implement it.

Accept-encoding: gzip, deflate

[other] [OPTIONAL] Clients and servers MAY provide other
headers and they MAY be ignored by the other system.

n/a

OpenTravel Custom Header: OTA-Echo-Token

For performance reasons, in order to accommodate massive exchanges of OpenTravel messages between two
systems in a high-volume B2B relationship, an optional HTTP Header, “OTA-Echo-Token”, may be used.

Without any extension to the HTTP protocol, the requesting system would send a request with a Keep-Alive
header and wait for a response. Each request would have to wait for a response. This is not high enough
performance for these applications.

When the “OTA-Echo-Token” header is used, the token value MUST be unique to that message and not shared
by any other message sent by that system. The sending system does not necessarily expect an immediate
response, but it does expect that whenever the response message is received, it will be accompanied by the
same token value in an “OTA-Echo-Token” header.

Using the “OTA-Echo-Token”, it is possible to multiplex several OpenTravel message transactions asynchronously

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-66

over the same TCP/IP connection. The token value correlates the request and the response.

Header Description Example

OTA-Echo-Token [OPTIONAL] A token sent with a request that is
expected to be echoed in a response. This is a string
token with a maximum size of 128 characters.

OTA-Echo-Token: 8335013

OTA-Echo-Token: A154/125/001

A requesting system that uses this header may only be attached to a responding system that uses the header, or
it will not receive the information necessary for it to function. A responding system that understands this
header SHOULD be able to reply synchronously to clients that do not use the header.

Encryption

• Encrypted communication between systems is accomplished with SSL (i.e., HTTPS).

• If encryption is required, a system MUST support HTTPS.

• Systems MAY communicate via unencrypted HTTP for transactions that do not need to be secure. HTTP
is also useful for transactions that are executed across a VPN or other networking channel that is
already secure for other reasons.

Authentication

• Authentication of a client (requestor) to a server (responder) is achieved via HTTP Basic Authentication.

• Authentication of a server (responder) to a client (requestor) is achieved via SSL.

• If authentication is required, a system MUST support HTTP basic authentication.

• Systems MAY communicate without authentication for transactions that do not require it.

Other Features

Logging

Organizations offering OpenTravel transactions MAY provide logging capability, regardless of the type of
transaction in the business message (e.g., travel verbs, infrastructure verbs), and SHOULD provide logging
capability for all transactions that involve implicit or explicit contracts or promises to pay. Trading partners MAY
exchange event logs to provide audit trails.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-67

Web Service Description

Introduction
This section provides guidance for proper WSDL creation for services based on OpenTravel XML Schema
specifications. Many industry experts consider the “Contract-First” style of service design to be the correct
choice for maximum service interoperability. Contract-First design can be considered akin to “Interface-First”
design, whereby the service interface is designed before development begins rather than generated from code.
Since OpenTravel is only responsible for defining message interfaces, it is naturally aligned with the concepts
behind Contract-First service design. Unfortunately, many of the developer tools currently on the market
attempt to simplify service creation by allowing the Web service interface to be generated from code. While
convenient, this style of interface definition can hamper interoperability and ultimately shields developers from
learning proper XML Schema and WSDL design.

OpenTravel schemas already define individual message payloads; however, a WSDL file is responsible for
defining the interface of a given service. This document attempts to serve as a guideline for proper WSDL
creation, while helping OpenTravel implementers create highly interoperable services through the use of
Contract-First design principles.

Readers may want to consider this section in conjunction with the SOAP and/or HTTP transport protocol
reference sections.

Terminology

The Web Services Description Language (WSDL) is an XML format for describing service interfaces (i.e. data
types, messages, ports and bindings). A WSDL file can consist of both abstract interface definitions as well as
concrete implementation details.

The WS-I is the Web Services Interoperability organization that is an open industry organization chartered to
promote Web services interoperability across platforms, operating systems and programming languages.

A usage profile schema is a modified schema, which further restricts the original OpenTravel options for a given
implementation. An instance document based on a Usage Profile schema should still validate to the original
OpenTravel schema that it is based on. A usage profile service, therefore, is a service that implements a set of
usage profile schemas that satisfy a given use-case.

Purpose

Although document style services, whose message payloads are defined by XML schemas, are common, it has
always been challenging to create an interface definition based on the Web service Description Language for
this type of service. Many developers creating client applications that will utilize Web Services are now
demanding WSDL files, which greatly reduce the time and complexity of consuming Web Services. In order to
be truly useful, the WSDL needs to reference the schema in a way that allows toolkits to bind the message data
types and understand how to marshal and un-marshal the XML message payload. OpenTravel based services fall
into this category and many service providers have been unable to create WSDL files that can be used by their
partners to automatically generate a client application.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.ws-i.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-68

During the 2005B publication period, a WSDL Publication Feasibility Study Committee was tasked with
determining if OpenTravel could define WSDL creation for their messages, and if so, what the project scope
would be. The committee concluded that a thorough summary of WSDL best practices, as well as a set of
working samples, would be a tremendous aid to the OpenTravel implementer. Since Web Services technologies
are still evolving open-ended specifications, there is much confusion regarding the proper implementation
techniques. WSDL creation is particularly challenging as most developers rely on toolkits to generate WSDL files
from their code. This is a dangerous practice, however, because it results in service interfaces that are more
tightly coupled with their implementation environment and hampers interoperability. Without the ability to rely
on tools to generate proper WSDL files, many implementers will be challenged to create a functional highly
interoperable service definition document.

The WS-I has been instrumental in creating best practice guidelines that can help clarify these issues and guide
the industry towards the goal of highly interoperable Web Services. Along with the WS-I guidelines, the
OpenTravel WSDL Implementation Guidelines, contained in section 3.2.6.2, provide further guidance and
examples, which will aid in the adoption and implementation of OpenTravel messages.

Scope

The primary intent of this section is to define the correct method of WSDL creation for OpenTravel messages as
well as to show sample interface definitions (WSDL) for selected OpenTravel schemas (request/response
message pairs). Secondarily, it will provide WSDL Best Practices documentation, which will aid OpenTravel
Implementers by providing real world implementation insights into XML Schema design and WSDL creation.

OpenTravel conducted a WSDL publication feasibility study as a precursor to creating the WSDL Implementation
Guide with the goal of outlining the scope of WSDL creation for OpenTravel based services. The study
considered defining WSDL files for OpenTravel usage profile based services and ultimately defined the scope of
WSDL creation as follows:

“While usage profile based WSDL files may provide the greatest benefit to OpenTravel implementers, it may be
overly ambitious to create these usage profile WSDL files at this point. Currently there is a parallel OpenTravel
study project underway which will further define a usage profile. Once this study is complete and sample usage
profiles are defined, OpenTravel may choose to publish usage profile WSDL files as well. In the meantime,
OpenTravel’s goal should be to publish sample message based WSDL files, which can either be used as is, or
serve as an example to help OpenTravel implementers.

These message-based Interface Definition WSDL files can be created for each request/response message pair.
However, until the concept of usage profiles are more fully defined and common usage patterns determined,
these message root based WSDL files will serve as valuable guidelines.”

WSDL Best Practices

Overview

The following OpenTravel WSDL Implementation Guidelines will aid in the adoption of OpenTravel messages by
providing real world guidance for developers and implementers.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-69

WSDL Definition

* Taken from the W3C WSDL 1.1 specification

A WSDL file defines services as collections of network endpoints, or ports. In WSDL, the abstract definition of
endpoints and messages is separated from their concrete network deployment or data format bindings. This
allows the reuse of abstract definitions: messages, which are abstract descriptions of the data being exchanged,
and port types, which are abstract collections of operations. The concrete protocol and data format
specifications for a particular port type constitute a reusable binding. A port is defined by associating a network
address with a reusable binding, and a collection of ports define a service. Hence, a WSDL file uses the
following elements in the definition of network services:

• Types– a container for data type definitions using some type system (such as XSD).
• Message– an abstract, typed definition of the data being communicated.
• Operation– an abstract description of an action supported by the service.
• Port Type–an abstract set of operations supported by one or more endpoints.
• Binding– a concrete protocol and data format specification for a particular port type.
• Port– a single endpoint defined as a combination of a binding and a network address.
• Service– a collection of related endpoints.

OpenTravel WSDL Creation
A WSDL file consists of two logical sections, namely the interface definition section and the implementation
binding section. The interface definition section is an abstract interface definition that describes data types and
messages supported by the service. The implementation binding section defines the concrete implementation
specifics such as the transport and binding information for a given service. While OpenTravel cannot provide
the implementation specific second portion of the WSDL file, it is possible to create the interface definition
portion of the WSDL file.

It is an acceptable practice in WSDL design to have separate WSDL files for each of the aforementioned sections
of a WSDL. In this way, an implementation specific WSDL file can refer to a common Interface Definition WSDL
file, such as that published by OpenTravel.

Building Modular WSDL

For the same reasons that OpenTravel chose to utilize a modular approach to schema design, the architecture
work group recommends a similar modular approach to WSDL design. Below is a summary of the components
of modular WSDL design, that includes a robust import mechanism to enable web services to be built in a
modular fashion:

• Three important considerations:

• Define the XML Schemas independent from the WSDL �

• Separate your WSDL into modular components �

• Leverage import to tie everything together �

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-70

• Key benefits of this approach:

• Easier to manage and maintain
• Fits model where XSD/WSDL are created independently �

• Addresses situations where XML schemas already exist �

• Increases reusability of schemas across projects �

• Use import to separate WSDL into modular components:

3.2-26. Schema/WSDL Modular Design

• WSDL files are organized into the following three components:

• XML schemas are placed in the 1st file
• WSDL message abstractions are placed in a 2nd file
• Service bindings are placed in a 3rd file

• How import is leveraged here:

• Service bindings would import the message definitions
• Uses <wsdl:import> to import definitions

• Message definitions would import the schemas
• Uses <xs:import> to import definitions

• Overall, this approach can greatly improve component reusability

• e.g., could provide multiple service bindings or URL locations for the same WSDL operations

Creating an Interface Definition WSDL

The abstract service interface portion of the WSDL can be defined by OpenTravel, since it refers only to the data
types and message operations already defined by OpenTravel schemas. This portion of the WSDL can
generically define the interface for multiple service implementations. It should be noted that some partners
may choose to define their own Interface Definition WSDL if they are using customized usage profile schemas
and/or including a unique combination of OpenTravel message schemas within the same WSDL file.

The sample below shows an Interface Definition WSDL for a Vehicle Reservation message. While the OpenTravel
schemas themselves can be included in the <types> section of the WSDL, the schemas have been imported
(referenced) in order to reduce the size and complexity of the WSDL, and to adhere to modular WSDL design. In

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-71

Figure 3.2-27 below, the import element is qualified as “xs:import” where the xs: prefix is associated with the
W3C Schema namespace. As stated earlier, the WSDL specification allows for importing of both schema files
and other WSDL files. Since in this case the imported file is a schema, the WS-I recommends that the “import”
element be qualified with a namespace prefix indicating that the import statement refers to the W3C Schema
xs:import rather than a WSDL wsdl:import.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:ota="http://www.opentravel.org/OTA/2003/05"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.opentravel.org/OTA/2003/05"
name="VehReservationService">

<!-- Define data types (import OTA schemas) -->
<wsdl:types>

<xs:schema>
<xs:import namespace="http://www.opentravel.org/OTA/2003/05"

schemaLocation="OTA_VehResRQ.xsd"/>
</xs:schema>
<xs:schema>

<xs:import namespace="http://www.opentravel.org/OTA/2003/05"
schemaLocation="OTA_VehResRS.xsd"/>

</xs:schema>
</wsdl:types>

<!-- Define request and response messages-->
<wsdl:message name="VehicleReservationRequest">

<wsdl:part name="OTA_VehResRQ" element="ota:OTA_VehResRQ"/>
</wsdl:message>
<wsdl:message name="VehicleReservationResponse">

<wsdl:part name="OTA_VehResRS" element="ota:OTA_VehResRS"/>
</wsdl:message>

<!-- Define operation and reference messages-->
<wsdl:portType name="VehicleReservationPortType">

<wsdl:operation name="OTA_VehResRQ">
<wsdl:input message="ota:VehicleReservationRequest"/>
<wsdl:output message="ota:VehicleReservationResponse"/>

</wsdl:operation>
</wsdl:portType>

</wsdl:definitions>

Figure 3.2-27. Sample OpenTravel Interface Definition WSDL

Creating an Implementation Binding WSDL

The concrete implementation portion of the WSDL will be specific to every service implementer, and therefore,
every implementation will have a unique Implementation Binding WSDL. The Implementation Binding WSDL
can import the Interface Definition WSDL, as shown in the example below. It should be noted that the “import”
element in this WSDL refers to the “WSDL” namespace rather than the “Schema” namespace. In the following
example, the default namespace is the WSDL namespace; therefore it is not necessary to explicitly qualify the
element with a pre-defined ‘wsdl:’ prefix. While each WSDL Implementation file is unique, and therefore not
published by OpenTravel, the following sample can serve as an example for OpenTravel implementers.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-72

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:ota="http://www.opentravel.org/OTA/2003/05"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.opentravel.org/OTA/2003/05">

<!-- Import Interface Definition WSDL-->
<import namespace="http://www.opentravel.org/OTA/2003/05" loca-

tion="OTA_VehResInterface.wsdl"/>

<!-- Define SOAP binding-->
<binding name="VehicleReservationBinding" type="ota:VehicleReservationPortType">

 <!-- Use document style and not rpc-->
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="OTA_VehResRQ">

<!-- Use 'literal' to include OTA XML as-is-->
<soap:operation soapAction="CreateReservation" style="document"/>
<input>

<soap:body use="literal"
namespace="http://www.opentravel.org/OTA/2003/05"/>

</input>
<output>

<soap:body use="literal"
namespace="http://www.opentravel.org/OTA/2003/05"/>

</output>
</operation>

</binding>

<!-- Define SOAP interface with previously declared binding-->
<service name="OTAVehicleReservationService">

<port name="VehicleReservationPort" binding="ota:VehicleReservationBinding">
<!-- Replace "http://mydomain/myservicename" with actual service

endpoint-->
<soap:address location="http://mydomain/myservicename"/>

</port>
</service>

</definitions>

Figure 3.2-28. Sample Implementation Binding WSDL

Implications to Toolkit Use/Test Results

Please refer to the OpenTravel Forum for WSDL and/or Schema issues related to specific toolkits. The forum can
be found at: http://www.opentravelforum.com

OpenTravel WSDL Reference
The following section provides additional detail on the individual sections of a WSDL file with special attention
paid to usage rules. Section 3.2.6.3.1 provides general guidance regarding the use of the WSDL
recommendation as issued by the W3C. Section 3.2.6.3.2 builds on that guidance by describing the best
practices for applying the WSDL recommendation within OpenTravel implementations.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.opentravelforum.com/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-73

W3C WSDL Usage Breakdown

This section expands on the ‘WSDL Definition’ section by further specifying each section of a WSDL file and its
usage in relation to the other WSDL sections. The information contained in this section of the document
describes the generic makeup of a WSDL file and is not necessarily based on OpenTravel best practices outlined
in this document. Section 3.2 provides specific examples for how these WSDL sections appear within an
OpenTravel implementation.

Interface Definition WSDL Sections

The interface definition section of a WSDL file is comprised of the following parts.

• definitions—The wsdl:definitions element MUST be the root element of a WSDL file and defines the
name of the web service in addition to serving as a container for the other WSDL sections. Additionally,
all namespaces used within the WSDL file SHOULD be declared here.

• types—The wsdl:types element describes all the data types used in the message request and response
payload. By default, the W3C Schema language is used to define these types, although this is not
mandatory. If the service uses only XML Schema built-in simple types, such as strings and integers, the
types element is not required. For document literal services, however, this section of a WSDL file
SHOULD be used to define the request and response message payloads by referencing the appropriate
XML Schemas.

• message—The wsdl:message element describes a single request or response message. It defines the
name of the message and contains zero or more message part elements, which can refer to message
parameters or message return values. For document literal services, both request and response
messages SHOULD be defined and reference the appropriate XML Schema(s) from the wsdl:types
section of the WSDL file.

• portType—The wsdl:portType element combines multiple wsdl:message elements to form a complete
one-way or round-trip operation. For example, a portType can combine one request and one response
message into a single request/response operation, most commonly used in SOAP services. Each
wsdl:portType element can (and frequently does) define multiple wsdl:operation elements.

Implementation Binding WSDL Sections

The implementation binding section of a WSDL file is comprised of the following parts.

• binding—The wsdl:binding element specifies how the service will be implemented on the wire. The
WSDL recommendation includes built-in extensions for defining SOAP services. Therefore, SOAP-
specific information MUST be defined within the wsdl:binding element.

• service—The wsdl:service element defines the Internet Protocol (IP) address for invoking the specified
service. Most commonly, this includes a resolvable URL for invoking the service.

OpenTravel WSDL Usage Breakdown
This section expands on each section of a WSDL file by specifying its usage within OpenTravel -based

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-74

implementations.

Interface Definition WSDL Rules

This section describes the rules for the interface definition section of a WSDL file. Generic Interface Definition
WSDL files can be created to define a reusable service interface. These Interface Definition WSDL files can be
imported by other Implementation Binding WSDL files, which define the implementation specific details (e.g.,
SOAP, HTTP).

Definitions

§ 1. The wsdl:definitions element MUST define a namespace prefix for the OpenTravel namespace.

xmlns:ota="http://www.opentravel.org/OTA/2003/05"

§ 2. The namespace declaration MAY be in the form of a default WSDL file namespace or an explicitly defined
namespace prefix.

xmlns="http://schemas.xmlsoap.org/wsdl/"
OR
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

§ 3. The targetNamespace attribute MAY reference the OpenTravel namespace.

Types

§ 4. The wsdl:types element MUST reference the relevant OpenTravel XML Schemas (e.g., request, response,
acknowledgement).

§ 5. The wsdl:types element MUST reference the relevant OpenTravel XML Schemas (e.g., request, response,
acknowledgement).

§ 6. XML Schemas MUST be included using the xs:import element rather than the wsdl:import element
(prefixed using the XML Schema namespace rather than the WSDL namespace).

§ 7. The xs:import element SHOULD be referenced from within an xs:schema element.

§ 8. The xs:import element SHOULD include a namespace attribute referencing the OpenTravel namespace.

§ 9. The schemaLocation attribute of the xs:import element MUST reference the applicable OpenTravel XML
Schema by name and MAY include the fully qualified file path or URL to the WSDL file (If a URL reference is used
it MUST NOT reference the OpenTravel online schemas which are available for reference only).

<wsdl:types>
<xs:schema>
<xs:import namespace="http://www.opentravel.org/OTA/2003/05"

schemaLocation="OTA_VehResRQ.xsd"/>
</xs:schema>
<xs:schema>
<xs:import namespace="http://www.opentravel.org/OTA/2003/05"

schemaLocation="OTA_VehResRS.xsd"/>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://opentravel.org/Specifications/OnlineXmlSchema.aspx
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-75

</xs:schema>
</wsdl:types>

Message

§ 10. Each message (e.g., request, response, acknowledgement) SHOULD be defined within a wsdl:message
element.

§ 11. The attribute named element within the wsdl:part element MUST reference the root node of the
appropriate OpenTravel Schema, which is defined by a wsdl:message element, and be prefixed with the
OpenTravel namespace.

<wsdl:message name="VehicleReservationRequest">
<wsdl:part name="OTA_VehResRQ" element="ota:OTA_VehResRQ"/>

</wsdl:message>
<wsdl:message name="VehicleReservationResponse">

<wsdl:part name="OTA_VehResRS" element="ota:OTA_VehResRS"/>
</wsdl:message>

portType

§ 12. The wsdl:input and wsdl:output elements of the wsdl:operation element MUST contain a message
attribute which references the OpenTravel request and response messages defined in the name attribute of a
wsdl:message element.

§ 13. Multiple wsdl:operation elements MAY be used for services that implement multiple operations.

<wsdl:portType name="VehicleReservationPortType">
<wsdl:operation name="OTA_VehResRQ">

<wsdl:input message="ota:VehicleReservationRequest"/>
<wsdl:output message="ota:VehicleReservationResponse"/>

</wsdl:operation>
</wsdl:portType>

Implementation Binding WSDL Rules

This section describes the rules for the Implementation Binding section of a WSDL file, which is specific to each
implementation. OpenTravel provides the following information for creating a SOAP based Implementation
Binding WSDL merely as a guideline.

If the Implementation Binding WSDL is a separate document referencing the Interface Definition WSDL, the
referenced WSDL file should be imported as follows:

§ 14. Other WSDL files MUST be included using the WSDL wsdl:import element rather than the Schema
xs:import element (Prefixed using the WSDL namespace rather than the Schema namespace).

§ 15. The namespace attribute of the wsdl:import element SHOULD reference the namespace of the imported
Interface Definition WSDL.

§ 16. The location attribute of the wsdl:import element MUST reference the Interface Definition WSDL by
name, and MAY include the fully qualified file path or URL to the WSDL.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-76

<wsdl:import namespace="http://www.opentravel.org/OTA/2003/05" loca-
tion="OTA_VehResInterface.wsdl"/>

Binding

§ 17. The type attribute of the wsdl:binding element MUST reference the name attribute of the wsdl:portType.

§ 18. The style attribute of the wsdl:binding element SHOULD be “document” and not “RPC”.

§ 19. For SOAP based services, the use attribute of the soap:body element SHOULD be “literal” and not
“encoded”.

<wsdl:binding name="VehicleReservationBinding" type="ota:VehicleReservationPortType">

<!-- Use document style and not rpc-->
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="OTA_VehResRQ">

<!-- Use 'literal' to include OTA XML as-is-->
<soap:operation soapAction="CreateReservation" style="document"/>

<wsdl:input>
<soap:body use="literal"

namespace="http://www.opentravel.org/OTA/2003/05"/>
</wsdl:input>
<wsdl:output>

<soap:body use="literal"
namespace="http://www.opentravel.org/OTA/2003/05"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

Service

§ 20. The binding attribute of the wsdl:port element MUST reference the name attribute of the wsdl:binding
element.

§ 21. For SOAP based services, the location attribute of the soap:address element MUST be a resolvable URL to
the actual service endpoint.

<wsdl:service name="OTAVehicleReservationService">
<wsdl:port name="VehicleReservationPort" binding="ota:VehicleReservationBinding">

<!-- Replace "http://mydomain/myservicename" with actual service endpoint-->
<soap:address location="http://mydomain/myservicename"/>

</wsdl:port>
</wsdl:service>

Examples
Following are additional examples of WSDL files for OpenTravel services, which will illustrate different WSDL
techniques. Figure 3-30 is an example of a properly formatted Interface Definition and Implementation Binding
WSDL file; figure 3-31 is an example of an improperly formatted Interface Definition and Implementation

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-77

Binding WSDL file.

Consolidated Interface Definition and Implementation Binding WSDL

The following example shows a complete WSDL where both the interface definition and the implementation
binding portions are contained within the same WSDL file. While this is an acceptable WSDL practice,
OpenTravel recommends the aforementioned modular WSDL design when a generic Interface Definition WSDL
file exists. This practice allows the Interface Definition WSDL file to be separated from the implementation
specific binding WSDL and thereby remain reusable.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:ota="http://www.opentravel.org/OTA/2003/05"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.opentravel.org/OTA/2003/05"
name="VehCancelService">

<!-- Define data types (import OTA schemas) -->
<wsdl:types>

<xs:schema>
<xs:import namespace="http://www.opentravel.org/OTA/2003/05" schemaLoca-
tion="OTA_VehCancelRQ.xsd"/>

</xs:schema>
<xs:schema>

<xs:import namespace="http://www.opentravel.org/OTA/2003/05"
schemaLocation="OTA_VehCancelRS.xsd"/>

</xs:schema>
</wsdl:types>

<!-- Define request and response messages-->
<wsdl:message name="VehicleCancelRequest">

<wsdl:part name="OTA_VehCancelRQ" element="ota:OTA_VehCancelRQ"/>
</wsdl:message>
<wsdl:message name="VehicleCancelResponse">

<wsdl:part name="OTA_VehCancelRS" element="ota:OTA_VehCancelRS"/>
</wsdl:message>

<!-- Define operation and reference messages-->
<wsdl:portType name="VehicleCancelPortType">

<wsdl:operation name="OTA_VehCancelRQ">
<wsdl:input message="ota:VehicleCancelRequest"/>
<wsdl:output message="ota:VehicleCancelResponse"/>

</wsdl:operation>
</wsdl:portType>

<!-- Define SOAP binding-->
<wsdl:binding name="VehicleCancelBinding" type="ota:VehicleCancelPortType">

<!-- Use document style and not rpc-->
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="OTA_VehCancelRQ">

<!-- Use 'literal' to include OTA XML as-is-->
<soap:operation soapAction="CancelReservation" style="document"/>
<wsdl:input>

<soap:body use="literal"

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-78

namespace="http://www.opentravel.org/OTA/2003/05"/>
</wsdl:input>
<wsdl:output>

<soap:body use="literal"
namespace="http://www.opentravel.org/OTA/2003/05"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

<!-- Define SOAP interface with previously declared binding-->
<wsdl:service name="OTAVehicleCancelService">

<wsdl:port name="VehicleCancelPort" binding="ota:VehicleCancelBinding">

<!-- Replace "http://mydomain/myservicename" with actual service
endpoint-->

<soap:address location="http://mydomain/myservicename"/>
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

Figure 3.2-29. Consolidated WSDL (Interface and Binding)

Incorrect Schema Import

The following example shows an incorrect method for importing schemas into a WSDL file. Unlike importing a
schema from within another schema, an XML Schema import within a WSDL file should be contained within the
“Types\Schema” section of the WSDL file (see Figure 3-31 for the correct method).

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:ota="http://www.opentravel.org/OTA/2003/05"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.opentravel.org/OTA/2003/05"
name="VehReservationService">

<!-- This is a Schema style import not a WSDL style import. -->
<xs:import schemaLocation="OTA_VehResRQ.xsd"/>
<xs:import schemaLocation="OTA_VehResRS.xsd"/>

<!-- Schemas should be imported within the unused Types section below. -->
<wsdl:types/>

<!-- Define request and response messages-->
<wsdl:message name="VehicleReservationRequest">

<wsdl:part name="OTA_VehResRQ" element="ota:OTA_VehResRQ"/>
</wsdl:message>
<wsdl:message name="VehicleReservationResponse">

<wsdl:part name="OTA_VehResRS" element="ota:OTA_VehResRS"/>
</wsdl:message>

<!-- Define operation and reference messages-->
<wsdl:portType name="VehicleReservationPortType">

<wsdl:operation name="OTA_VehResRQ">
<wsdl:input message="ota:VehicleReservationRequest"/>
<wsdl:output message="ota:VehicleReservationResponse"/>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-79

</wsdl:operation>
</wsdl:portType>

Figure 3.2-30. Incorrect Schema Import Example

Authentication

Introduction
Authentication addresses whether the parties to the exchange are who they claim to be. Although integrity
guarantees the message arrives at its destination unchanged, it does not guarantee the destination is the right
place. That is the role of authentication.

Authentication can exist anywhere from the lowest level protocol to the highest level. Having more than one
level of authentication is common practice. For example, a user may be authenticated by a VPN server to get
into the network, authenticated by the domain server to gain access to the server and authenticated by the e-
mail server to access e-mail.

A survey of the OpenTravel community revealed that almost all message payloads are transported using SOAP
over HTTP. HTTP offers basic authentication and digest access authentication while SOAP offers authentication
using WS-Security recommendations from OASIS.

Terminology

HTTP basic access authentication is a method designed to allow a web browser, or other client program, to
provide credentials – in the form of a user name and password – when making a request.

HTTP Digest access authentication is one of the agreed methods a web page can use to negotiate credentials
with a web user (using the HTTP protocol). This method builds upon (and obsoletes) the Basic access
authentication, allowing user identity to be established without having to send a password in plaintext over the
network.

WS-Security (Web Services Security) is a communications protocol providing a means for applying security to
Web Services. On April 19 2004 the WS-Security 1.0 standard was released by Oasis-Open. On February 17 2006
they released version 1.1. Originally developed by IBM, Microsoft, VeriSign and Forum Systems, the protocol is
now officially called WSS and developed via committee in Oasis-Open.

The Organization for the Advancement of Structured Information Standards (OASIS) is a global consortium that
drives the development, convergence and adoption of e-business and web service standards. Members of the
consortium decide how and what work is undertaken through an open, democratic process.

Purpose

This section provides guidance for OpenTravel message authentication that will allow implementations to be
consistent, interoperable, and to conform to a single pattern. While HTTP and SOAP are the two most widely
used protocols for transporting payload, it is important to recommend a minimum authentication standard for

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Oasis-Open
http://en.wikipedia.org/w/index.php?title=Forum_Systems&action=edit
http://en.wikipedia.org/wiki/VeriSign
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Oasis-Open
http://en.wikipedia.org/wiki/Web_Services
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Password
http://en.wikipedia.org/wiki/Basic_access_authentication
http://en.wikipedia.org/wiki/Basic_access_authentication
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/Password
http://en.wikipedia.org/wiki/User_name
http://en.wikipedia.org/wiki/Web_browser
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-80

OpenTravel messages. It is also important that such a standard allows users the freedom to agree on transport
protocols such as HTTP, MQ, etc. Based on the results of the survey of the OpenTravel user community, using
SOAP headers for authentication will benefit current and future implementations because of its flexibility.

Scope

The primary intent of this section is to outline our recommendation for OpenTravel authentication using the
WSS specifications from OASIS. With all the choices within the WSS specification, our recommendation is to use
a simple yet effective form of authentication based on the OASIS username token profile specification 1.0 for
password digest only. Although the specification also supports the clear text password option, this has been
excluded from our recommendation, as it does not offer enough protection as a protocol independent security
protocol.

To demonstrate the recommended approach, the following example instances show a generic SOAP without
authentication (see Figure 3.2-21) followed by a version of the instance with the recommended SOAP
authentication scheme (see Figure 3.2-22).

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/06/soap-envelope">
 <SOAP-ENV:Body>
<OTA_PingRQ
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05
/usr/rubicon/spadkins/share/ota/2005B/schema/OTA_PingRQ.xsd"
 TimeStamp="2002-12-03T11:09:47-05:00"
 Target="Production"
 Version="1.3"
 SequenceNmbr="1">
 <EchoData>Are you there?</EchoData>
</OTA_PingRQ>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 3.2-31. OpenTravel Message using SOAP without Authentication

The following is an example of an OpenTravel message using SOAP with the authentication header based on the
OASIS username token profile 1.0 specification for password digest.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/06/soap-envelope">
<SOAP-ENV:Header>
 <wsse:Security>
 <wsse:UsernameToken>
 <wsse:Username>OTATEST</wsse:Username>
 <wsse:Password Type="...#PasswordDigest">U.voVsCB5lddfUbrY6keTfP0ICs=</wsse:Password>
 <wsse:Nonce>NZRyazDPW3UvoVOcfo1Z6FdPFpE=</wsse:Nonce>
 <wsu:Created>2006-12-11T20:29:16Z</wsu:Created>
 </wsse:UsernameToken>
 </wsse:Security>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-81

</SOAP-ENV:Header>
 <SOAP-ENV:Body>
<OTA_PingRQ
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05
/usr/rubicon/spadkins/share/ota/2005B/schema/OTA_PingRQ.xsd"
 TimeStamp="2002-12-03T11:09:47-05:00"
 Target="Production"
 Version="1.3"
 SequenceNmbr="1">
 <EchoData>Are you there?</EchoData>
</OTA_PingRQ>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 3.2-32. OpenTravel Message using SOAP with Authentication

Specific details on the specification is available from http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-username-token-profile-1.0.pdf

Implementers are not limited to this authentication scheme but should try to have this as a minimum. For
example, you can still implement HTTP authentication with VPN authentication on top of this.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-82

Additional Non-Functional Requirements

Connection Management
Within the transaction stack, connections operate at a layer below that of a session. OpenTravel does not
prescribe any guidance in this area, but the OpenTravel implementer will likely need to address this non-
functional requirement and the subsections below provide useful guidance for this.

Depending on the architecture of the platform, each session and connection will have one of the following
relationships:

• One-to-one. With this design, a session and a connection are tightly coupled so that when a session is
established, the connection is also established and the connection persists for as long as the session
does. This design is typically simple to implement and is sufficient for many low-volume services. The
tight coupling can, however, lead to the disruptive loss of a session due to an unrelated network event.

• Many-to-one. With this design, multiple sessions are multiplexed over a single connection. When the
overhead of establishing connections is high, it is usually desirable for multiple sessions to share a
connection. For environments in which a host system acts as a session concentrator for many users, this
model offers significant performance benefits. The downside of the model, however, is that a loss of a
single connection can have a significant impact on a multitude of sessions.

• One-to-many. With this design, a single session will use multiple connections in parallel or serially. This
allows for load balancing of connections associated with long-lived sessions by permitting the
connection to terminate and reestablish without impact to the session. Alternatively, parallel
connections can be used to accelerate transactions by making multiple, simultaneous, independent
requests or as a round-robin mechanism to protect against loss of any one connection. When the
session finishes, all the connections are closed. Opening and closing multiple connections may be time
consuming and resource intensive.

• Many-to-many. Of the four designs outlined here, this one is the most sophisticated. It blends the
performance gains of the many-to-one design with the redundancy capabilities of a one-to-many
design. The session is not responsible for establishing a connection, and the loss of a connection does
not affect the session. Fully decoupling session and connection offers system users the maximum
performance and robustness guarantees.

Synchronous and Asynchronous Messaging
As with any type of communication, it is important to define the protocol for exchanging information. In a
verbal conversation between two people, it is understood that if one party asks a question, the other can
respond immediately. With a less-interactive medium such as e-mail, though, the rules of engagement are
different; the party who asks a question knows that some time may pass before a response is returned.

Exchanging data between software applications is no different. When two trading partners integrate systems,
they will need to define the message exchange patterns that control the flow of information between system
endpoints. OpenTravel supports both synchronous and asynchronous message exchange patterns. Although

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-83

other exchange patterns exist (e.g., publication-subscribe, one-way), they are not built in to the OpenTravel
specification.

Synchronous Messaging
The synchronous message exchange pattern is easy to understand because it closely mirrors the natural flow of
conversation between two people. A sender transmits the message, waits for a response, and cannot move on
to another task until either the response arrives or an inordinate amount of time transpires and they stop
waiting for a response. If a response is returned, it can contain either success or failure—indicating that the
message was successfully processed or not.

The sender has the advantage of immediate feedback. Due to the lack of overhead involved in managing the
conversation, this tends to be the default model for high-volume, high-speed exchanges. Similarly when
transaction sequence is important, the implicit serialization offered by a single-threaded synchronous model is
a popular solution. The downside is that each sender has to have logic to handle all error conditions and is at
the mercy of the responder and the network to provide a timely response.

The majority of messages within the OpenTravel specification are designed with a synchronous message
exchange model in mind. An example of this pattern within OpenTravel is a request for hotel room availability,
which is functionality provided by the OTA_HotelAvailRQ message. Any party requesting room availability will
send this request message to the supplier. This message pair, and others like it, can be used asynchronously as
well, but that implementation is unlikely.

Asynchronous Messaging
The asynchronous message exchange pattern is analogous to exchanging e-mail. Once a sender transmits a
message, he/she will wait for a response from the recipient. The sender is then free to send another e-mail or
to move on to another task. If the e-mail is not successfully received by the target e-mail host, the sender will
receive an error message.

From the perspective of a software application, this model prevents a sending system from being limited by the
time a recipient needs to process a message. As response messages are received by the originating sender, they
are correlated with the original request.

The downside is the considerable overhead associated with matching requests and responses and with storing
messages locally for later transmission. Also, the sender receives little or no feedback if there are problems;
often, the only time a sender knows there is a problem is when they can no longer write to the local queue,
which may be hours or even days later. Consequently, management of asynchronous links tends to require
more sophisticated techniques.

For nearly all of OpenTravel messages, the decision to exchange messages asynchronously or synchronously is a
trading partner decision. The OTA_NotifReport message pair, however, assumes an asynchronous messaging
model. This message is used to indicate the status of processing one or several previous messages and
leverages the MessageAcknowledgmentType complexType. The OTA_NotifReportRS message is used to
acknowledge reception of an OTA_NotifReportRQ message, but does not (unlike its request counterpart)
assume asynchronous or asynchronous implementation. Both are valid for the response.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-84

Asynchronous message exchange may be useful for a variety of travel applications. The following list outlines
some common scenarios to which this message exchange pattern may apply:

• Manual processing—when manual intervention is needed at the receiving party. This can occur when a
specific service needs to be confirmed with an external party that is not linked electronically with the
receiver of the original request. Manual processing frequently is needed for booking destination
services.

• Bulk data transfer—when the source party sends a large volume of requests to the receiving party in a
single batch. Processing the complete batch of requests may take a long time, thus making it impossible
for the receiving party to answer interactively. An example of this situation is a file transfer of rate
updates.

• Batch processing—when the receiving party accumulates requests from possibly different sources until
a specific time is reached when these requests can be processed.

• Different priorities—when the source party does not need a response immediately. This can occur
when electronic communication occurs between two systems without a human user waiting for a
response. This allows the receiving party to prioritize requests more effectively to satisfy different
quality-of-service agreements.

• Different system sizes—when the source system is much larger than the receiving system and the
receiving system cannot cope with the speed at which the source system can send requests. CRS PMS
connectivity is an example. In this case, asynchronous communication is more proper for the orderly
processing of the requests because it frees the source system from unduly waiting for responses.

• Pure notification—when the receiving system does not need a business response containing business
information but simply an acknowledgment of the reception by the receiving system of the sent
notification.

• Time-intensive processing—when the receiving system requires a significant amount of time.

Transport Security
Transport security is sometimes referred to as protocol security if the protocol layer provides security features.
Within a SOA, transport security is typically addressed by the enterprise service bus (ESB). Transport security
provides the following benefits:

• The message contents are protected from tampering. As a result, the integrity of the message is
maintained and trading partners can be assured that what was sent and what was received was
identical.

• The message contents are hidden from view by unauthorized parties. As a result, trading partners can
be assured that privacy requirements are not compromised.

• The parties involved are who they claim to be. As a result, trading partners can exchange information in
a trusted environment without risking involvement of unwelcome third parties.

The “SOAP Transport Protocol Reference” section of this guide includes a sample SOAP message with a WS-

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-85

Security token.

Payload Security
Unlike transport security, payload security is aware of the individual elements of the payload and is therefore
able to provide a tailored level of service. Although, theoretically, payload security has to address the same
issues as transport security, it is typically used as a supplementary mechanism when transport security is
insufficient or when applying transport security (such as encryption) is perceived as overkill (e.g., when only a
tiny fraction of the transaction volume needs to encrypted).

The “SOAP Transport Protocol Reference” section of this guide includes a sample SOAP message with an XML
signature that surrounds the payload.

Message Integrity
Message integrity is the mechanism for ensuring that the message arrives at its destination materially identical
to what was sent. Integrity does not guarantee that a message will arrive at its destination; however, it does
guarantee that failure to arrive will be detected by the sender, at which point the sender is responsible for the
subsequent activity.

Message Encryption
Encryption is a prevalent technology that makes it possible to encode an entire payload or parts of it, including
any headers so that, as it traverses a network, it cannot be read by anyone without the appropriate access
information such as a decoder key.

Authentication
Authentication addresses whether the parties to the exchange are who they claim to be. Although integrity
guarantees that the message arrives at its destination unchanged, it does not guarantee that the destination is
the right place. That is the role of authentication.

Authorization
Authorization functions at a level above authentication. It confirms that a party is allowed to do what it is
doing. This is often seen as role based; for example, a partner may be allowed to check inventory, but not
authorized to sell it. So even though the partner has been successfully authenticated, it is not permitted the
seller role. The enterprise service bus (ESB) may be used to fulfill the role of enforcer.

Security Policies (per process)
Policies are the unambiguous statements of rules controlling the application of all aspects of security. Policies
may be declared in a document format. However, security policies usually involve some form of automated
administration and enforcement such as a registry or repository that promotes coordination among trading
partners.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-86

Quality of Service
Quality of Service (QoS) refers to various extra-functional characteristics, such as latency, bandwidth,
availability, reliability. QoS is an important factor to measure how the middleware differs from another, and
how the middleware is flexible in implementing a wide spectrum of business requirements.

• Message Priorities: Publishers specify priorities between their own messages or their absolute priority
compared to other messages under the same topic.

• Reliability (Delivery Guarantee): Providing guaranteed messages delivery via once-and-only-once
semantics, even if the backbone shuts down and has to be restarted. In addition, the clients guarantee
to deliver and receive the messages if the backbone comes back again.

• Subscriptions Selectivity: Subscribers define their subscriptions in a specific language, typically through
XPATH expression language that defines the interesting topics (subscriptions).

• Validity Interval: Publishers advertise or specify a timeout for their published messages. The Publishers
can specify the life time of the message in QoS section of the message before publishing it. The
message will be expired automatically after its life time and it will not be delivered any more to the new
subscribers.

• Confidentiality: Publishers connect only to trusted backbones and send (partially) encrypted messages.
Encrypted connections are typically supported with SSL in SOCKET Protocol.

• Security: Only the authorized Publishers or subscribers can access the backbone. This is typically
supported using password authentication.

• Persistency (Failsafe): All the publications and the history of the messages under one topic can be
stored persistency. Persistance may be achieved by storing the messages persistently in a DB layer.
Using persistency provides an easy recovery after a server crash, so nothing will be lost. The clients will
automatically reconnect (depending on their fail safe configuration) and there is no need to re-
subscribe again after a backbone failure.

• Client Failsafe: Provides a method for clients to automatically reconnect to the server if the connection
goes down.

• Point-to-Point Message Delivery: A publisher sends a message to a specific subscriber.

Guaranteed Delivery
Also known as Message Assured Delivery (MAD), guaranteed delivery uses a higher-level protocol to guarantee
the arrival of a message. Within the travel industry, the most widely used MAD protocol is Type-B, but more
generally used protocols include MQ. Guaranteed delivery introduces two key features:

• Unique message identification. To know if a message has arrived, the sending system gives each
message a unique identifier. The receiving system is then required to explicitly acknowledge receipt of
the message.

• Retry management. Retry counts are the number of attempts to deliver a message that may be made

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://en.wikipedia.org/wiki/Persistence_(computer_science)
http://en.wikipedia.org/wiki/XPATH
http://en.wikipedia.org/wiki/Backbone_network
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-87

before delivery attempts are suspended, while retry intervals are the gaps between those attempts.
The retry intervals may be static or follow some form of geometric progression. In the interest of
performance, retries are typically marked as such, so that the receiving system only needs to check to
see if the transaction has already been processed when the indicator is set.

Typically, MAD is associated with an asynchronous transaction model, because the immediate reply to the
inbound transaction acknowledges receipt, while the response based on the processing of the message is sent
independently later. However, this is not required because the acknowledgment can be considered implicit in
receiving a response if incorporated as part of a broader flow control process.

In reality, “guaranteed delivery” is a misnomer because it usually means that the message is not lost to the
sender if delivery could not be completed, not that delivery is guaranteed.

Message Priority
Typically, message priority comprises the following two dimensions:

• Urgency. Depending on its associated level of urgency, a request must be responded to within a certain
time frame. The higher the priority, the shorter the time frame. This also affects the sequence in which
transactions are processed, so a higher priority transaction can jump ahead of lower priority
transactions that are awaiting processing.

• Criticality. Business criticality refers to “what happens if” scenarios that address what the system may
do with a message when problems occur. Some messages, such as financial exchanges (bookings) or
legal compliance (TSA feeds), are considered absolutely business critical. The higher the criticality, the
less likely those transactions will be thrown away during problems (although other less-critical
transactions may be dumped). One of the most common practices is the dumping of availability queries
while protecting bookings.

Normally, urgency is controlled by the sender, while criticality is determined by the receiving host system,
subject to contract negotiations and service-level agreements (SLAs).

Message Lifetime
A message lifetime can be measured chronologically based on either a relative or absolute time to live, for
example, 5 minutes from generation time or at 10.30 p.m. on 2007-02-03. Or a message lifetime can be
measured based on some event counter. For example, in TCP/IP, the TimeToLive field refers to the number of
“hops” a packet may take before it is deleted. Each hop decrements a count set by the sender, and when it
reaches zero, the packet is thrown away. The purpose is to establish a mechanism by which parties agree that
processing the message is no longer worthwhile. Normally, a message lifetime is not an issue. However, during
service recovery after an outage, it is extremely useful to be able to purge messages that are no longer relevant.

Flow Control
Flow control is a common technique for maximizing bandwidth utilization and, to a lesser extent, CPU
utilization. Flow control allows systems to dynamically respond to events such as network congestion and
outages, and it facilitates scalability.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-88

Flow control provides mechanisms for reducing the rate at which transactions are sent if response times begin
to increase. In many systems and networks, there is a point of inflection at about 60 to 70 percent utilization
when competition for limited resources cascades into an exponential decrease in overall performance. If each
sender backs off even a little, these cascades are quickly eliminated, allowing everyone to maximize their
overall throughput.

This “windowing” also allows for reductions in the number of acknowledgments that need to be exchanged. If
every transaction requires an individual receipt, then the receiving system can expend considerable resources
just acknowledging messages and not processing them. By allowing acknowledgment of every Nth transaction,
the receiving system spends less time acknowledging messages, time which it can devote to processing instead.

Message Bundling
Bundling is a crude form of windowing. By combining multiple transactions in a single payload, the sending
system effectively crams multiple messages through where only one would normally pass. This can provide
value because there is only one acknowledgment. However, it is ineffective at managing message rates,
requires logic in the receiver to split the bundle apart into its component transactions, and can bypass most
flow control mechanisms designed to protect a system.

Because the SOAP protocol expressly forbids bundling of multiple payloads inside a SOAP body, this technique
is rapidly falling out of favor as systems move to SOA.

Service-Level Agreements
A service level agreement (SLA) is a negotiated agreement between two parties where one is the customer and
the other is the service provider. This can be a legally binding formal or informal "contract." Contracts between
the service provider and other third parties are often (incorrectly) called SLAs — as the level of service has been
set by the (principal) customer, there can be no "agreement" between third parties (these agreements are
simply a "contract").

SLAs provide metrics against which many aspects of a business process are measured. Typically, SLAs cover
transaction response times, system availability, and service recovery. SLAs are often part of the business
contracts between parties. In SOA architectures, it is often the role of the enterprise service bus (ESB) to
produce the metrics against which SLAs are used.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-89

OpenTravel Reliable Messaging Guidelines
The purpose of the OpenTravel Reliable Messaging Guide is to provide two complementary documents that
clearly describe the features, benefits and impacts of implementing reliable messaging based on either the IATA
TypeX or OASIS related specifications (WS-RM, WS-Addressing, WS-MakeConnection, WS-Policy which need to
be composed to achieve reliable messaging).

This is document provides a summarized overview of these specifications. The intent of this document is to
help OpenTravel implementers make technically informed decisions. The target audience for this guide is
analysts and developers that need to understand the salient technical aspects of the TypeX and OASIS related
specifications—as well as the resulting technical impact when implementing a solution for reliable messaging.
Of course, the underlying premise is that delivery reliability and compatibility to some transport sector business
practices are deemed mandatory.

Web Services Reliable Messaging (WS-RM)
The purpose of this OpenTravel reliable messaging guide is to provide implementers a clear understanding of a
reliable messaging solution based on Web Service Reliable Messaging (WS-RM) and its composition with
additional WS-* specifications. The guide will be useful to analysts and implementers who want to understand
all aspects of the WS-* reliable messaging solution to help making a technically informed decisions in selecting
a reliable messaging solution for their travel systems.

This section of the document contains the sections summarized as follows:

Introduction: Purpose and scope are presented. Of importance are the definition of reliability, and a concise
statement of the OpenTravel requirements for reliable messaging.

Web Service Reliable Messaging: Technical aspects of WS-RM and its composition with WS-* specifications to
provide implementers in depth understanding of the solution with emphasis in addressing OpenTravel reliable
messaging implementation requirements.

OpenTravel Requirements Crosscheck: A matrix compares the functionality offered by WS-RM with respect to
the OpenTravel requirements.

Messaging Scenarios: This section is to clearly explain the behavior of a number of messaging scenarios.

Appendix: XML message samples and document references.

Introduction

Purpose

An increasing number of partners in the travel and hospitality industries are using web services to exchange
OpenTravel messages, and there is a need for an open and interoperable solution that will guarantee end to
end delivery of these critical business messages. This section provides an overview of the solution based on
WS-Reliable Messaging specification (OASIS Standard 2007), and explains how the solution addresses the
reliable messaging concerns for OpenTravel message exchanges between travel systems. Most importantly, the

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-90

goal is to provide implementers a clear understanding of the reliable message framework and knowledge to
enable a reliable messaging solution from selected provider for their travel systems.

Scope

This section covers the OpenTravel messages exchange reliability requirements over SOAP/HTTP.

OpenTravel Messaging Requirements

Figure 3.4.1-1 presents the OpenTravel messaging context that will be treated in this document. The application
components may be decoupled from the SOAP stacks; a common simple example is that the Sender/Receiver
and the application are running on separate machines.

OpenTravel messages are exchanged with the SOAP stack over a transport appropriate for each application
(shown as dashed lines).

OpenTravel Messaging Context

Figure 3.4.2-1 presents the OpenTravel messaging context that will be treated in this document. OpenTravel
messages are exchanged with the messaging stack over a transport appropriate for each application (shown as
dashed lines).

Figure 3.4.1-1. OpenTravel Messaging Context

Reliable Messaging Definition

For the purpose of this document, reliability is defined as the ability to guarantee the delivery of messages
between two distributed endpoints. Reliable messaging means:

• The message is delivered successfully at its intended destination endpoint.

• A given message is received by the intended receiver once and only once.

• A series of messages are received by the intended receiver in the sequence there were sent.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-91

OpenTravel Messaging Requirements

The OpenTravel Messaging requirements are as follows:

1. Any specification MUST be open and freely available. OpenTravel does not endorse any proprietary
technologies or specifications. So any specification must be freely licensed for any implementer.

2. The specification MUST support HTTP as a messaging protocol. OpenTravel has identified that
increasingly its members are gravitating to only one or two protocols with HTTP(S) as the default
solution. HTTP version 1.0 and 1.1. These are defined in various RFCs, including but not limited to
RFC 1945 and RFC 2616.

3. The specification MUST support the asynchronous message exchange pattern. The traditional
exchange pattern for message assured delivery is asynchronous so any specification must support
this MEP as a minimum. Asynchronous Exchange is defined simply as follows:

Client sends a message. Server responds acknowledging receipt of the message. Server sends a
response. Client responds acknowledging the receipt of the response. Note: Errors MAY occur at
any step but no requirement is imposed on where in the MEP these would be handled.

4. The specification MUST be capable of fully supporting the range of security requirements identified
in the WS-I Security Challenges, Threats and Countermeasures v1.0 white paper. While the paper
focuses on SOAP messages (as distinct from HTTP messages), the guidance and requirements
contained within the paper can be abstracted and applied to any form of XML-based message
content.

5. The specification MUST support transmission of messages that are received exactly once by the
receiving application. Therefore duplicate messages must be detected and removed before
reaching the application.

6. The specification MUST support the informing of any failure of the message to arrive at its
destination within a specified interval which is agreed upon between the partners.

7. If this specification relies on another specification to meet the above requirements that
specification MUST also be open and freely available.

8. The specification MAY support other protocols. Legacy and proprietary protocols will persist for
many years yet. Also other specialist protocols may emerge with new technologies such as mobile.

9. The specifications SHOULD support other exchange patterns. Other patterns have advantages over
the traditional exchange and should be encouraged such as Synchronous and One Way (e.g. “Fire
and Forget”).

10. The specifications MAY support sequence control. Although not strictly part of reliable messaging
sequence counting is often the mechanism used to determine when a message has been lost. It is
often a small step to support sequence control although this may require application level support
at the least it SHOULD NOT prevent sequence control. For example a multi-threaded application
may be unable to guarantee in sequence processing so messages may be processed and responded
to out of order even if the reliable messaging mechanism guaranteed in sequence delivery.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.ws-i.org/Profiles/BasicSecurity/SecurityChallenges-1.0.pdf
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-92

Terminology

Term Definition
Back Channel Response channel in a two-way transport protocol.

Duplex exchange Bidirectional exchange over one or two connections, equivalent to two (2) One-
Way exchanges

Endpoint Node responsible for sending and receiving a message; the endpoint may or
may not be the initiator of the message or the ultimate receiver of a message.

End-to-End Defined to be application to application, where the application is the entity that
generates a message (initial sender) or is targeted by a message (ultimate
receiver).

MEP Message Exchange Pattern

MOM Message Oriented Middleware (e.g. a JMS implementation such as Sun’s Open
MQ or IBM MQ.)

Non-addressable endpoint An endpoint that does not permit incoming connections.

One-Way exchange Request-only (event) exchange over a single connection, with no response (i.e.
payload) expected on the back channel.

SCT Security Context Token. SOAP message senders can use security context tokens
to sign and/or encrypt a series of SOAP messages, known as a conversation,
between a SOAP message sender and the target Web service. As long as the
security context token has not expired, the SOAP message sender can use the
same security context token to sign and/or encrypt the SOAP messages sent to
the target Web service. Also, security context tokens are based on a symmetric
key, which makes them inherently more efficient at digitally signing or
encrypting a SOAP message than an asymmetric key.

Session A logical connection between two applications. The concept of session is
decoupled from the underlying message transport and the exchange pattern.

Two-Way exchange Request/response exchange over a single connection.

WS-RM WS Reliable Messaging

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-93

WS-RM Overview

Web Service Reliable messaging (WS-RM) is a specification that allows web services endpoints to send
messages between each other reliably in the event of a software component, system or network failure. WS-
RM defines a messaging protocol to identify, track and manage the reliable transfer of messages between a
source and a destination.

WS-RM introduces critical quality of service features for the guaranteed delivery or failure notification of SOAP
messages, and provides the standard protocol for interoperability between vendors’ message oriented
middleware environment. It positions itself as a fundamental WS-* extension in that it can be composed with
other Web service standards as shown in Figure 3.4.1-2 below [1] to provide efficient, interoperable and viable
solutions to address the reliable message exchanges needs.

WS-* has been broadly adopted and implemented by a large spectrum of vendors, and has been successfully
applied to many industry domains.

Interoperability

WS-RM provides the standard protocol for interoperability between vendors’ message oriented middleware
environment. WS-RM with SOAP over HTTP is an open standard platform itself, which further promotes support
of vendor diversity on an enterprise level.

In addition, WS-RM is part of the WS-I Reliable Secure Profile, which builds on the WS-I Basic Profile. All the
major Web service vendors, as well as open source projects, refer to WS-I as a reference, which thus sets the
tone for cross-industry interoperability.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-94

Figure 3.4.1-2. WS-RM and WS-* integration for reliable messaging solution

WS-RM Messaging Model

The basic model of WS-RM defines an interoperable protocol that enables RM Source and RM Destination
agents that sit inside the client’s and server’s SOAP processing engines to transfer messages, handle retries, and
achieve reliable delivery.

RM Source responsibilities:

• Request creation and termination of the reliability contract/sequence

• Add reliability headers into messages

• Re-send messages if necessary

RM Destination responsibilities:

• Respond to requests to create and terminate a reliability contract/sequence

• Accept and acknowledge messages received

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-95

• Optionally, drop duplicate messages

• Optionally, hold back out-of-order messages until missing messages arrive

Note: In a two-way request/response reliable message exchange scenario, there will be an RM Source and an
RM Destination in the service requester/Sender, and the same in the Service provider/Receiver.

The WS-RM messaging model is presented in Figure 3.4.1-3 below. By design, WS-RM addresses the reliable
exchange of messages between two endpoints, and it does not extend the reliability perimeter to the
application for a very good reason. Composition of WS-RM and application-level acknowledgment (that are also
carried reliably) is a technically superior approach. By separating the application and middleware infrastructure
layers, it ensures the end-to-end reliability does not create a new set of technical challenges of its own making.

This has the additional benefit of allowing the application to be unaware of the complexities of the transport
mechanism being employed. It can simply provide the infrastructure the message to be sent and then move on
to its next job.

While the WS-RM protocol, like SOAP itself, is a one-way protocol, it can be used in any message exchange
pattern (one-way, two-way, duplex, etc). While not required, normally the message exchange pattern used by
an application will leverage WS-Addressing. However, regardless of how the message exchange happens, and in
particular, regardless of how any message correlation is done, WS-RM can be used without impact on these
mechanisms. In other words, the addition of WS-RM will have no impact on the application's message
processing model and likewise, the messaging mechanism has no impact on the WS-RM protocol. This
separation of concerns was a key design factor in the specification. This means that, unlike some other reliable
messaging protocols, the application can turn it on and off for each message with no impact on the application
code.

The sequence of events in a WS-RM reliable exchange is as follows:

• The application source sends a message (1) by providing it to the SOAP stack.

• The WS-RM source (SOAP stack +WS-RM) sends the message until an acknowledgment is received (2,
3).

• Once received (4), the WS-RM destination stores the message locally and sends an acknowledgment
back to the RM source (5, 6, 7).

• The RM destination delivers the message to the application destination. The reliability guarantee is
fulfilled at this point (8).

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-96

Figure 3.4.1-3. WS-RM messaging model

Security

WS-RM was designed to compose and leverage any of the WS-* security mechanisms used. The WS-RM change
to each individual message sent is limited to the addition of a few SOAP headers. WS-RM prevents sequence
hijacking by binding the WS-RM artifacts in the message to the WS-RM sequence. This is a critical aspect that
not all reliable messaging protocols support. What this means is that only the properly authorized entity may
use a particular WS-RM sequence. This is best illustrated with an example.

Example: Sequence Hijacking:

In a situation where there are two users accessing a service, both may be trusted users and therefore each
individual message sent by the respective user is inspected to ensure that the message is properly encrypted
and/or signed by an authorized user. And this is where some reliable messaging protocols stop. However, there
is an issue with this. While both users are trusted, there needs to be an additional security check in place to
ensure that each user is limited to just the WS-RM sequences it is assigned to. Without this type of check there
is a security risk that allows one user to send messages within the other user's WS-RM sequence - in other
words, hijack it. WS-RM prevents this type of attack by associating/binding each WS-RM sequence with a
particular security context (typically associated with just one user), and will not allow any other security context
to be used with that WS-RM sequence.

Sequences

WS-RM performs its tasks within the scope of a concept known as a "Sequence". A sequence is used to
maintain the ordering of messages sent between two endpoints. Each WS-RM message is assigned an ordinal
value within a sequence which will be used for a number of purposes, but most importantly to ensure that each
message is delivered in the proper order to the application - assuming that this level of QoS is desired.

The sequence is maintained by the WS-RM protocol and is not typically exposed to the application developer. If

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-97

the application has the need for a "session" of some kind, for example to group a set of message together for
some other purpose, then some other mechanisms should be employed - such as WS-Transactions. This allows
the application session to be used and managed regardless of whether WS-RM is needed or used. It is
important to re-emphasize that the WS*- set of standards work together in a composable fashion to deliver
outstanding quality of service as needed by any messaging system.

Essential Properties

This section summarizes the important aspects of the WS-RM protocol:

• OASIS Standard: open standard with broad cross-industry adoption and has significant investment by a
broad spectrum's of vendors in tooling and infrastructure.

• Open and interoperable solution to avoid being locked to a specific vendor

• Has broad industry support to allow integration with other web service based business processes

• Transport independence: because WS-RM is an "add-on" to existing SOAP message exchanges, it can be
used with any transport.

• WS-RM uses the extensibility points of SOAP to achieve its goals. Through the use of SOAP headers it
minimizes the impact on existing SOAP messages.

• WS-RM composes with the WS-* security standards to provide the highest level of protection.

• Guaranteed reliability: By design, WS-RM infrastructure layer addresses the reliable exchange of
message; the application layer remains focus on the business logic.

• Provides message delivery assurances such as:

o Each message sent is received exactly once, at most once, at least one, and so on

o Message be delivered to the application in the same order in which they were sent

o Detection of duplicate messages

o Failure to deliver a message made known to both the sender and the receiver

• Composes with existing security solutions for secured message exchange

o As well as other Quality of Service WS-* specifications.

Delivery to Non-Addressable Endpoints

While not part of the WS-RM specification, for completeness, it is worth mentioning how messages can be
delivered to non-addressable endpoints. Non-addressable endpoints are ones that, for whatever reason,
cannot accept incoming requests to create a new connection. Most typically this is because they are behind a
firewall, but it could also be due to resource limitation of the hosting environment.

The WS-* suite of specifications solves this problem by using a specification called WS-MakeConnection (WS-
MC). In short it allows the non-addressable end to "pull" any message destined for it from the sending

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-98

endpoint. Like WS-RM, WS-MC was designed to be composed with the rest of the WS-* stack and as such it is
unaware of the message exchange pattern being used - it is simply designed to transmit a message (any
message) that is waiting to be delivered.

This means that WS-MC allows for the sending of messages between two endpoints regardless of whether the
message is a request or response. Many protocols will only allow for the sending of responses or for clients to
be the "pullers". WS-MC allows for any endpoint (client or service) to act in the "puller" role.

Description

WS-MakeConnection works by having the non-addressable endpoint (MCSender) initiate a connection to the
addressable endpoint (MCReceiver) by sending a one-way message that does nothing more than identify the
MCSender. Upon receipt of this message, the MCReceiver will then use that connection's back channel to
transmit any message that is waiting to be transmitted to that particular MCSender.

A WS-MakeConnection message is not required to be reliable, but we only address its use in a reliable context.

The sequence of steps is:

1. The addressable endpoint is provided a unique endpoint reference (an instance of a MakeConnection
EPR – i.e. an MC-EPR) to the non-addressable endpoint. For example, perhaps the wsa:ReplyTo is an
MC-EPR.

2. The addressable endpoint will treat this MC-EPR just like any other EPR - except when it needs to send
a message to this EPR instead of trying to open a new connection to the wsa:Address URI of the EPR it
will queue up the message instead.

3. The non-addressable endpoint sends a MakeConnection message to the addressable endpoint. This
message contains the unique identified used in the MC-EPR from step 1.

4. If there a message waiting to be delivered then the addressable endpoint transmits that message on
the current back channel. If more messages are waiting it will include a MessagePending header (with a
value of true) in the message.

5. Steps 2 through 4 are repeated until the non-addressable endpoint has all of the messages.

It should be noted that a WS-MakeConnection message can be used with or without WS-ReliableMessaging.
The WS-RM messages are transmitted back to the non-addressable endpoint via the connection established by
the MakeConnection message. The WS-RM protocol is unaware of WS-MakeConnection being used and thus it
will behave as if it were working in a normal asynchronous environment.

The following diagram presents the use of WS-MakeConnection in a request/response exchange in the context
of an existing WS-RM Sequence with a single application instance executing a blocking request.

Figure 4 highlights several important points, which will be revisited later. The first is that the RM Source is
aware of the exchange pattern for it to send a WS-MakeConnection request in order to obtain a response.
However, it is worth noting that the application does not need to be aware that WS-MakeConnection is being
used at all. The SOAP infrastructure can hide all of this complexity from the application developer.

Due to the composable nature of WS-ReliableMessaging and WS-MakeConnection, since they are unaware of
the message exchange patterns being used by the application, they can be used to retrieve message for a single

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-99

request/response MEPs as well as single-request/multiple-response MEPs.

Figure 3.4.1-4. WS-MakeConnection over HTTP

Essential Properties

The WS-MakeConnection enables a non-addressable endpoint to obtain any message from an addressable. This
avoids the necessity for the client to resend (replay) the message - which could be a very large performance
issue for some reliable protocols. The advantages of this approach are that it reduces the potential number of
duplicate requests on the server side, as well as avoiding issues in special scenarios such a request that triggers
multiple responses.

WS-RM Implementation Details
This section presents the impacts of implementing WS-RM.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-100

Processing

This section presents the required characteristics of a WS-RM implementation in order to provide the reliability
presented in the WS-RM specifications.

The WS-RM specification defines a protocol and a set of mechanism that allow developers of web services to
ensure that messages are delivered reliably between two endpoints. By design, it ensures a proper separation
of concerns that ensures the end-to-end reliability.

Before message exchange starts, a Sequence is defined as a shared context for a set of messages that are
exchanged between a source and destination applications that share the same delivery assurance. Every
message that participates in the sequence carries the sequence identifier, along with a message identifier that
identifies how the current messages fits into the overall sequence. This information correlates the messages in
a sequence for enforcement of reliability.

As illustrated in Figure 3.4.1-2, RM and WS-* integration for reliable messaging solution, the WS-* solution
domain is intended to provide a highly aligned set of features that can be composed to provide a solid, efficient
and comprehensive solution.

WS-RM uses WS-Addressing for referencing endpoints, request/response correlation (using MessageId and
RelatesTo); WS-Security to protect against sequence spoofing threats, etc. The rich functionalities provided by
these building blocks of WS-* are handled by the middleware infrastructure.

In the case when an endpoint is not directly addressable (e.g. behind the firewall or not able to allow incoming
connection), WS-MakeConnection (WS-MC) protocol is another building block for the reliable messaging
solution. It is used in WS-RM to enable synchronous message exchange.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-101

For example, in the use case that the request has a large request message, where re-transmission can be
expensive. If the message has been successfully received, however the HTTP connection times out (possibly
due to the request is awaiting processing or a long running process), WS-RM allows tracking of the successful
transmission of the message and delivery of the response message and WS-MC helps avoided re-transmission
of the request message.

The infrastructure encapsulates the complexity of WS-RM implementation from the application level. It
manages the persistence of messages and Sequence state for required quality of service for message delivery.
The middleware normally supports different modes of persistence and it is configurable based on the quality of
service level of the application.

There are two ways in which state can be preserved: volatile and persistent. In the cases when it is acceptable
that applications participating in a Sequence be incapable of recovering from the failure. WS-RM protocol is
used for detecting failure when such failure occurred, terminating the Sequence and beginning new one. In
such a scenario, the state of the Sequence and the messages exchanged may be maintained in a volatile,
unrecoverable in-memory store.

However, when recovery from failure is required for application participating in a Sequence, then each must be
configured the quality of service level to manage and of reliably persisting messages and state of the Sequence.

Request/Response (Non-Addressable Client)

Figure 3.4.1-5 illustrates a synchronous reliable message exchange over a single connection between a Global
Distribution System (GDS) online application and an airline reservation system using the OTA_AirAvailRQ/RS
message pair as an example. The GDS endpoint is non-addressable, and only a single HTTP connection is used in
communicating the message exchange. The response message is sent back to the sender endpoint via the HTTP
back channel.

When reliable messaging is enabled, the RM Source and the RM Destination become responsible for
transmitting the application message and ensuring delivery to the Receiver. Based on the RM policies
configured, the RM Source and the RM Destination handle the Create Sequence handshake and add RM
elements in the SOAP headers for reliable messaging exchange. The RM processing is transparent at the
application level.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-102

Figure 3.4.1-5. Request/Response with a non-addressable sender

Figure 3.4.1-6 illustrates how RM agents ensure message delivery in an error case when the response message
from the service provider is not delivered to the client due to connection failure.

Figure 3.4.1-6. Request/Response (non-addressable sender) with a failed response

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-103

If the original transmission of the OTA_AirAvailRS message failed and the service provider lost the connection to
retransmit the response, the GDS’s RM agent could initiate a connection by sending a MakeConnection
message (defined in the WS-MakeConnection specification) for the service provider to use for sending the
response. This provides a channel for the service provider to send messages back to the client. Note that the
frequency of sending the MakeConnection message can be one of the RM parameters to configure during initial
reliable messaging setup.

Request/Response (Addressable Client)

Figure 3.4.1-7 illustrates a two-way asynchronous reliable message exchange between a GDS online application
and a central hotel booking system using OTA_HotelResNotifRQ/RS message pair as an example.

In this scenario, the response is sent over a different connection and the behavior is similar with each
connection establishing separate Sequences.

Figure 3.4.1-7. Two-way application message exchange with RM enabled

Securing reliable message exchange

Figure 3.4.1-8 illustrates reliable message exchanges using WS-Security to protect against sequence spoofing
threats.

In general the attacker with knowledge of the Sequence identifier can use RM Sequence message, RM Protocol
Header Block, etc. to forge the RM sequence life cycle or traffic messages. These attacks are “two-way” in that
an attacker may choose to target the RM source by, for example, inserting a fake SequenceAcknowledgement
header into a message that it sends to the AckTo EPR of an RM source.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-104

To counter sequence spoofing attempts, the mechanism based on the WS-SecureConversation model is used as
an example to illustrate how RM agents secured sequences in reliable message exchanges:

1. The RM Source and the RM Destination establish a security context

2. During the CreateSequence exchange, the RM Source identifies the security context to use to protect
the sequence

3. For the lifetime of the Sequence the RM Source and the RM Destination use the session key(s)
associated with the security context to sign (as defined by WS-Security) the body and any relevant WS-
RM defined headers of any and all messages or faults that refer to that Sequence.

Figure 3.4.1-8 describes a summary of the message flows that are required to establish a security context to
secure reliable messaging.

Figure 3.4.1-8. secure conversation and a security context token (SCT) to secure reliable message exchange

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-105

Client Side Impacts

This section discusses how the use of WS-RM impacts the implementation and the resources on the client side.

When reliable messaging is enabled, all the work is handled by the infrastructure RM agents (See Reliable
Messaging Model). The RM processing is transparent at the client application. The best practice is to configure
the RM parameters during initial reliable messaging set up and leave the infrastructure code to handle the
processing.

Server Side Impacts

This section discusses how the use of WS-RM impacts the implementation and the resources on the server side.
Similar to the Client application, the infrastructure code handles the implementation for transmitting the
OpenTravel message and ensuring delivery. There is no impact to the Server application.

OpenTravel Requirements Crosscheck

This section provides compliancy of WS-RM features to the OpenTravel requirements for reliable messaging. It
should be noted that certain characteristics that are not part of the standard could be provided by the
implementation.

Requirements TypeX Comment

MUST be open and freely available OASIS Standard 2007.

MUST support HTTP as a messaging protocol Builds on SOAP extension points and is
transport agnostic.

MUST support the asynchronous message exchange
pattern Can be used in any message exchange

pattern (one-way, two-way, duplex, etc.)

MUST Support secured delivery Composes with the WS-* security
standards.

Messages sent MUST be received exactly once by the
receiving application

WS-RM infrastructure layer eliminate
duplicates to ensure the receiving
application only received the message
once.

The sending application MUST be informed of any
failure of the message to arrive at its destination.
Where this specification relies on another to meet the
above requirements that specification MUST also be
open and freely available.

All specifications WS-RM relies on, as
shown in Figure 3.4.1-2, are open and
freely available.

MAY support other protocols
Builds on SOAP extension points and is
transport agnostic, and various message
oriented environments such as IBM
MQSeries and JMS.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-106

SHOULD support other exchange patterns. Can be used in any message exchange
pattern (one-way, two-way, duplex, etc.)

MAY support sequence control.

WS-RM infrastructure layer leverages
sequence control to guarantee ordered
delivery of messages.

Messaging Scenarios
This section presents a number of scenarios for a single use case, demonstrating how WS-RM is used to provide
reliable exchanges. The purpose of this section is to highlight the issues surrounding reliable messaging when
errors occur.

The context used for all the presented scenarios is a simple application to application exchange over HTTP with
synchronous request/response MEP for a non-addressable sender. In this context, a synchronous response is
normally expected in the HTTP response to the sent request. The response is expected in the HTTP back
channel.

Failed to Receive

Description: In this use case the receiver fails to receive the message sent. Therefore, the receiver will never
send a response with a piggybacked acknowledgment.

WS-RM Processing: The RM infrastructure layer Agent will resend the message, after a prescribed time window,
until the response and/or an acknowledgment are received. The sender application is isolated from handling
failure.

Failed to Respond

Description: In this scenario the sender receives the acknowledgment but not a response to the message sent,
however the receiver did receive the message. This implies that either the response was unavailable or lost in
the return path.

WS-RM Processing: The RM Infrastructure i.e. the RM Agent is responsible to resend the response and ensure it
is received at the receiving application. The RM processing is transparent to the application layer. If necessary,
as in the case of a non-addressable client, the sender will initiate a connection over which the response will be
sent.

Failed Connection

Description: In this scenario the connection between the communicating endpoints is lost after sending the
request.

WS-RM Processing: The RM Infrastructure layer handles the connection failure. For example, if the application
is a non-addressable endpoint, its RM agent could initiate a connection by sending a WS-MakeConnection. This
provides a channel for the service provider to send the response back to the requesting application. WS-
Addressing handles the Request/Response messages correlation. The Sender and Receiver applications are

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-107

isolated from handling the connection failure.

Failed Application

Description: In this scenario the receiving application is down or the connection between the receiving
application and the reliable receiver is down. The sender does receive an acknowledgment but no response to
the request.

WS-RM Processing: When the receiving application becomes available again the RM infrastructure will invoke
the application to process the message. The sending and receiving applications are unaware of the situation.

Sample OpenTravel Messages with WS-RM Enabled

The following XML samples present OpenTravel messages using WS-RM.

Synchronous Request/Response

Request: OTA_AirAvailRQ

An RM Sequence element is added in the sample SOAP message for OTA_HotelNotifRQ as shown in the figure
below. The Sequence element represents the location of the current message in relation to the overall
sequence of messages within which it is being delivered. The Identifier element contains an ID value associated
with the sequence itself, while the MessageNumber element contains a number indicating the position of the
message within the overall of sequence of messages sent.

Also note that the WS-Addressing ReplyTo element in the SOAP header can have an anonymous URL for WS-
MakeConnection. This is added by the RM Source. The RM source will detect that the expected sequence
acknowledgment or response from the service provider is missing; it will send a MakeConnection to establish a
back channel for the service provider to send a message back.

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200702"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
 <wsa:ReplyTo>
 <wsa:Address>http://docs.oasis-open.org/ws-rx/wsmc/200702/anonymous?
id=http://Business456.com
 /guid/6733e337c0a901036f206f2089a1870b
 </wsa:Address>
 </wsa:ReplyTo>
 <wsa:MessageID>
 http://Business456.com/guid/71e0654e-5ce8-477b-bb9d-34f05cfcbc9e
 </wsa:MessageID>
 <wsa:To>http://example.com/ReservationService/123</wsa:To>
 <wsa:Action>http://example.com/ReservationService/123/request</wsa:Action>
 <wsrm:Sequence>
 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>
 <wsrm:MessageNumber>1</wsrm:MessageNumber>
</wsrm:Sequence>
 </S:Header>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-108

 <S:Body>
 <!-- OTA_AirAvailRQ Message Payload -->
 </S:Body>
</S:Envelope>

Response: OTA_AirAvailRS

Just as in the Air Availability request, the RM Sequence element is added to the SOAP header. For message
optimization, the RM Destination may piggyback an acknowledgment in the response to the client.

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200702"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
<wsa:RelatesTo>
 http://Business456.com/guid/71e0654e-5ce8-477b-bb9d-34f05cfcbc9e
</wsa:RelatesTo>
 <wsa:MessageID>
 http://Business456.com/guid/71e0654e-5ce8-477b-bb9d-45o05cfkji8p
 </wsa:MessageID>
 <wsa:To> http://docs.oasis-open.org/ws-rx/wsmc/200702/anonymous?
id=http://Business456.com
 /guid/6733e337c0a901036f206f2089a1870b
</wsa:To>
 <wsa:Action>http://TravelToday.com/ReservationService/789/response</wsa:Action>
 <wsrm:Sequence>
 <wsrm:Identifier>http://Business456.com/RM/XYZ</wsrm:Identifier>
 <wsrm:MessageNumber>1</wsrm:MessageNumber>
</wsrm:Sequence>
 <wsrm:Sequenceacknowledgment>
 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>
 <wsrm:acknowledgmentRange Upper="1" Lower="1"/>
 </wsrm:Sequenceacknowledgment>
 </S:Header>
 <S:Body>
 <!-- OTA_AirAvailRS Message Payload -->
 </S:Body>
</S:Envelope>

Asynchronous Request/Response

Request: OTA_HotelResNotifRQ

As in the Air Availability request, the RM Sequence element is added to the SOAP header.

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200702"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
 <wsa:ReplyTo>
 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-109

 </wsa:ReplyTo>
 <wsa:MessageID>
 http://Business456.com/guid/71e0654e-5ce8-477b-bb9d-34f05cfcbc9e
 </wsa:MessageID>
 <wsa:To>http://example.com/ReservationService/123</wsa:To>
 <wsa:Action>http://example.com/ReservationService/123/request</wsa:Action>
 <wsrm:Sequence>
 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>
 <wsrm:MessageNumber>1</wsrm:MessageNumber>
</wsrm:Sequence>
 </S:Header>
 <S:Body>
 <!-- OTA_HotelResNotifRQ Message Payload -->
 </S:Body>
</S:Envelope>

Response: OTA_HotelResNotifRS

The WS-RM Sequence element and possibly the Sequenceacknowledgment are added to the SOAP message for
OTA_HotelResNotifRS, similar to the earlier OTA_AirAvailRS message example.

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200702"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
<wsa:RelatesTo>
 http://Business456.com/guid/71e0654e-5ce8-477b-bb9d-34f05cfcbc9e
</wsa:RelatesTo>
 <wsa:MessageID>
 http://Business456.com/guid/71e0654e-5ce8-477b-bb9d-45o05cfkji8p
 </wsa:MessageID>
 <wsa:To> http://Business456.com/serviceA/789</wsa:To>
 <wsa:Action>http://TravelToday.com/ReservationService/789/response</wsa:Action>
 <wsrm:Sequence>
 <wsrm:Identifier>http://Business456.com/RM/XYZ</wsrm:Identifier>
 <wsrm:MessageNumber>1</wsrm:MessageNumber>
</wsrm:Sequence>
 <wsrm:Sequenceacknowledgment>
 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>
 <wsrm:acknowledgmentRange Upper="1" Lower="1"/>
 </wsrm:Sequenceacknowledgment>
 </S:Header>
 <S:Body>
 <!-- OTA_HotelResNotifRS Message Payload -->
 </S:Body>
</S:Envelope>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-110

Security Enabled for Secure Reliable Messaging Exchange

OTA_HotelResNotifRQ

For a secured reliable message exchange, the security context token is included in the OpenTravel request
message in the sample SOAP message below. The RM Destination determines if this message was sent by its
sequence peer by identifying and authenticating the initiator that sent the OpenTravel request message.

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200702"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
xmlns:wsc=”http://schemas.xmlsoap.org/ws/2005/02/sc”
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd"
 <S:Header>
 <wsa:ReplyTo>
 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>
 </wsa:ReplyTo>
 <wsa:MessageID>
 http://Business456.com/guid/71e0654e-5ce8-477b-bb9d-34f05cfcbc9e
 </wsa:MessageID>
 <wsa:To>http://example.com/ReservationService/123</wsa:To>
<wsa:Action>http://example.com/ReservationService/123/request</wsa:Action>
<wsse:Security>
<wsu:Timestamp wsu:Id="uuid:6738cb0c-0120-f388-2048-b0b59a6740b2">
 <wsu:Created>2009-04-02T14:25:56Z</wsu:Created>
 ……
 <wsc:SecurityContextToken wsu:Id="This">
 <wsc:Identifier>uuid:6738c4ab-0120-f918-c4e1-b0b59a6740b2</wsc:Identifier>
 </wsc:SecurityContextToken>
 <wsse:Security>
 <wsrm:Sequence>
 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>
 <wsrm:MessageNumber>1</wsrm:MessageNumber>
 </wsrm:Sequence>
 </S:Header>
 <S:Body>
 <!-- OTA_HotelResNotifRQ Message Payload -->
 </S:Body>
<S:Envelope>

References

Web Services Specifications:

• http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf

• OASIS Web Services Reliable Messaging Policy Assertion (WS-RM Policy) v1.1

• W3C Web Services Addressing (WS-Addressing) v1.0

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://docs.oasis-open.org/ws-rx/wsrmp/v1.1/wsrmp.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-111

• OASIS Web Services Make Connection (WS-MakeConnection) v1.1

• OASIS Web Services Security: SOAP Messages Security (WS-Security) v1.0

• OASIS WS-SecureConversation v1.3

• OASIS WS-Trust 1.3

Web Service Resources:

• WS-I Reliable Security Profile v1.0 Working Group Draft - Best practices and interoperability guidelines

• Web Services Test Forum - provides an environment for interoperability testing of Web Service
implementations, and also provides common test bed for Web Services regression testing

Vendors and software products providing WS-Reliable Messaging support:

• Apache Sandesha2 on Axis2

• IBM WebSphere product family

• Oracle WebLogic Server

• GlassFish, open source application server

• SAP NetWeaver

• Microsoft Windows Communication Foundation (WCF)

[1] Adopted and modified Figure 17.2 of the Service-Oriented Architecture Concepts, Technology, and Design book by Thomas Erl.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://msdn.microsoft.com/en-us/netframework/aa663324.aspx
http://www.sap.com/platform/netweaver/index.epx
https://glassfish.dev.java.net/
http://www.oracle.com/technology/products/weblogic/index.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.btools.help.modeler.doc/doc/concepts/overviews/productfamilyoverview.html
http://ws.apache.org/sandesha/sandesha2/
http://www.wstf.org/
http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/ws-rx/wsmc/200702
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-112

TypeX Reliable Messaging

This portion of the document contains the following sections:

Introduction: This section presents the purpose and scope of this document, including the definition of
reliability and a concise statement of the air transport sector requirements for reliable messaging.

TypeX Overview: An overview of TypeX is presented with an emphasis on the key requirements considerations.

Requirements Crosscheck: A matrix compares the functionality offered by TypeX with respect to the reliable
messaging requirements.

Messaging Scenarios: This section explains the behavior of the TypeX specification for a number of standard
messaging scenarios.

Recommendations: This section illustrates solutions using the TypeX specification in a variety of contexts.

Appendix: This section contains XML message samples and document references.

Introduction

Purpose

This section of the guide describes the use of TypeX [TYPEXSPEC] to provide reliable messaging. Some
background is provided on TypeX, as well as examples demonstrating TypeX messaging over different message
exchange patterns. Implementations are also discussed in detail.

Scope

The document is restricted to the use of TypeX over SOAP/HTTP, although TypeX is not restricted to SOAP/HTTP
and can be used over JMS or Restful framework. This is for two reasons: 1) Reliable delivery is not covered by
SOAP/HTTP and 2) OpenTravel has identified a trend in their customers and partners to use HTTP, particularly
with the synchronous request/response exchange pattern.

This section does not address the following aspects of reliable messaging:

• Performance benchmarks

• Message Level security, notably WS-Security

• Transport Level security

• Conversations: duplex asynchronous multiple request/response

For TypeX, these topics are available in existing documents.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.iata.org/padis
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-113

OpenTravel Messaging Requirements

This section presents the OpenTravel reliable messaging requirements. Some requirements may vary to a
degree from one sector to another. These requirements are based on the premise that all OpenTravel message
exchanges are carried out over HTTP. This suggests that reliable messaging using SOAP or JMS or over HTTP are
possible ways of meeting this requirement.

OpenTravel Messaging Context

Figure 3.4.2-1 presents the OpenTravel messaging context that will be treated in this document. OpenTravel
messages are exchanged with the messaging stack over a transport appropriate for each application (shown as
dashed lines).

Figure 3.4.2-1. OpenTravel Messaging Context

Reliable Messaging Definition

For the purpose of this document, reliability is defined as the ability to guarantee the delivery of a message
between two business applications, otherwise termed as an end-to-end exchange. Reliable messaging is
therefore defined as the exchange of messages with reliability between two business applications, regardless of
the message exchange pattern.

OpenTravel Messaging Requirements

The OpenTravel Messaging requirements are as follows:

1. Any specification MUST be open and freely available. OpenTravel does not endorse any proprietary
technologies or specifications. So any specification must be freely licensed for any implementer.

2. The specification MUST support HTTP as a messaging protocol. OpenTravel has identified that
increasingly its members are gravitating to only one or two protocols with HTTP(S) as the default
solution. HTTP version 1.0 and 1.1. These are defined in various RFCs, including but not limited to RFC
1945 and RFC 2616.

3. The specification MUST support the asynchronous message exchange pattern. The traditional exchange
pattern for message assured delivery is asynchronous so any specification must support this MEP as a

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-114

minimum. Asynchronous Exchange is defined simply as follows:

Client sends a message. Server responds acknowledging receipt of the message. Server sends a
response. Client responds acknowledging the receipt of the response. Note: Errors MAY occur at
any step but no requirement is imposed on where in the MEP these would be handled.

4. The specification MUST be capable of fully supporting the range of security requirements identified in
the WS-I Security Challenges, Threats and Countermeasures v1.0 white paper. While the paper focuses
on SOAP messages (as distinct from HTTP messages), the guidance and requirements contained within
the paper can be abstracted and applied to any form of XML-based message content.

5. The specification MUST support transmission of messages that are received exactly once by the
receiving application. Therefore duplicate messages must be detected and removed before reaching
the application.

6. The specification MUST support the informing of any failure of the message to arrive at its destination
within a specified interval which is agreed upon between the partners.

7. If this specification relies on another specification to meet the above requirements that specification
MUST also be open and freely available.

8. The specification MAY support other protocols. Legacy and proprietary protocols will persist for many
years yet. Also other specialist protocols may emerge with new technologies such as mobile.

9. The specifications SHOULD support other exchange patterns. Other patterns have advantages over the
traditional exchange and should be encouraged such as Synchronous and One Way (e.g. “Fire and
Forget”).

10. The specifications MAY support sequence control. Although not strictly part of reliable messaging
sequence counting is often the mechanism used to determine when a message has been lost. It is often
a small step to support sequence control although this may require application level support at the
least it SHOULD NOT prevent sequence control. For example a multi-threaded application may be
unable to guarantee in sequence processing so messages may be processed and responded to out of
order even if the reliable messaging mechanism guaranteed in sequence delivery.

Terminology

Term Definition
Back Channel Response channel in a two-way transport protocol.
Duplex exchange Bidirectional exchange over one or two connections, equivalent to two (2) One-

Way exchanges
Endpoint Node responsible for sending and receiving a message; the endpoint may or

may not be the initiator of the message or the ultimate receiver of a message.
End-to-End Defined to be application to application, where the application is the entity that

generates a message (initial sender) or is targeted by a message (ultimate
receiver).

MEP Message Exchange Pattern
MOM Message Oriented Middleware (e.g. a JMS implementation such as Sun’s Open

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.ws-i.org/Profiles/BasicSecurity/SecurityChallenges-1.0.pdf
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-115

MQ or IBM MQ.)
Non-addressable endpoint An endpoint that does not permit incoming connections.
One-Way exchange Request-only (event) exchange over a single connection, with no response (i.e.

payload) expected on the back channel.
Session A logical connection between two applications. The concept of session is

decoupled from the underlying message transport and the exchange pattern.
TXM TypeX Messaging
TXM Node Endpoint that understands the TypeX schema and implements the TypeX

protocol.
Two-Way exchange Request/response exchange over a single connection.
XATAP TypeX Application-To-Application Protocol

TypeX Overview
The purpose of TypeX Messaging (TXM) is to provide an efficient protocol for reliable messaging to deliver an
XML payload to one or multiple applications or recipients compatible with, but not limited to, air transport
business practices and standards. The TypeX protocol is decoupled from underlying transport and may be used
over any transport and any message exchange pattern. TypeX core components are:

• TypeX envelope : XML container that carries the payload, the list of recipients, as well as metadata
which include:

o Payload attributes

o Reliability level for the payload

o Exchange pattern used (e.g. whether a response is expected)

o Delivery report request

• TypeX reliability protocol termed XATAP: reliability protocol that guarantees end-to-end delivery.

• TypeX session management termed XSM: manages logical connections between endpoints

Interoperability

The TypeX specification facilitates interoperability because the specification encapsulates the behavior of the
TypeX protocols and the participating nodes during message exchanges. In addition, TypeX is not composed
with other specifications, which eliminates interoperability issues from the evolution of individual external
specifications, and provides a complete and standalone set of protocols.

TypeX Messaging Context
Figure 3.4.2-2 below shows the TypeX messaging context. Important points of consideration include:

• There can be one or multiple receiving applications (i.e. multicasting is supported), as shown in the
diagram.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-116

• It is transport independent.
• It is architecture independent of architecture, i.e. TypeX may be deployed anywhere from a service

oriented implementation to a web service
• Bindings are specified for the following transports: SOAP/HTTP, JMS and TCP.

Figure 3.4.2-2. TypeX Messaging Context

Essential Properties

TypeX was designed to be a reliable and secure messaging protocol from the beginning, and thus provides all
the core functionalities necessary for messaging needs. Only the essential properties of the TypeX protocol that
are pertinent to the OpenTravel requirements are discussed in this section. For additional reading, please refer
to TypeX specification which discusses the complete list of features [TYPEXSPEC]. Some references are provided
in the Appendix section of this document.

• Public IATA standard: open availability enables broad adoption in the industry.

• Transport independence: all features in TypeX are supported for all transports; currently there are
specified TypeX bindings for SOAP/HTTP, JMS and TCP.

• End-To-End reliability: guaranteed application to application delivery provided by the TypeX extension
XATAP and delivery reporting.

• Session management: management of a logical connection between two applications in order to
achieve flow and connection control.

• Multiple Recipients: a message can sent to one or more applications or recipients.

• Web Service compatibility: a TypeX envelope is simply carried as the payload in the SOAP envelope.

• Compatibility IATA, ATA and ICAO message communications: compatible with other related IATA and

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-117

ICAO standards, it also facilitates interoperability during the transition.

• Support for all standard message exchange patterns

• Permits detection of duplicate messages

• Permits messaging ordering

• Session management

• Grouping of message with message ordering

• End-to-End reporting (ultimate receiver or recipient to originator)

• Message Priority: high priority messages are processed first.

TypeX Envelope

This section presents the essential aspects of the TypeX envelope. The TypeX envelope consists of a number of
essential components, which are specified by the source application:

• Payload : the business message to send, possibly with attachments

• Recipients : the list of targeted application destinations

• MEP : the end-to-end exchange pattern is specified by the application

• ReliabilityLevel : this parameter indicates the criticality of the message; the default value (2) requires
that the message be acknowledged and safe stored. For informational messages, the value of zero (0)
requires no acknowledgment and no safe store. The intermediate value of one (1) requires an
acknowledgment but no safe store. The receiving node needs to meet this policy parameter.

• Expiration Time: a parameter that defines the date and time after the message is no longer valid, and
thus delivery should no longer be attempted. This parameter is important in meeting business rules.

• Priority: a parameter that defines the urgency of the message; messages with the highest priorities are
processed first. This parameter is important in meeting business rules.

The TypeX agent, responsible for sending the message, optionally utilizes the following protocols:

• XATAP: the application-to-application reliability protocol

• XSM: establishes a session for the duration of the exchange which may encompass many exchanges.

The XML in Figure 3.4.2-3 defines a basic TXM Envelope carrying an OpenTravel message that is targeting a
single recipient with no response expected from the recipient:

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-118

Figure 3.4.2-3. TXM Envelope Carrying an OpenTravel Message

Transports

TypeX messaging may be implemented over any transport. A number of TypeX bindings are specified for the
transports SOAP/HTTP, JMS and TCP [TYPEXIMPGUIDE]. TypeX is naturally transported over SOAP as a payload,
and is compatible with any WS-* specifications.

Message Exchange Patterns

TypeX supports all possible end-to-end message exchange patterns (MEP). The TypeX exchange patterns are:

• Fire-and-Forget: simple one-way messaging with no expectation of a response (default MEP), other
than an acknowledgment if XATAP is deployed. For informational messages, XATAP may not be enabled.

• SendReceive: synchronous request/response exchange over a single two-way connection. The

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-119

requesting application may or may not block until a response is received. In non-blocking mode
(recommended), the requesting application is invoked via a callback when the response is received. The
request and response may be correlated via the field InReplyTo. If multiple application instances are
multiplexed over one or more connections, then the SessionId (see XSM) is also used to uniquely target
a response.

• Conversation: asynchronous request/response exchange over two one-way connections (duplex); the
exchange consists of one or more request/response pairs. The correlation between requests and
responses is achieved with the field InReplyTo and the identifiers set by the sender and the responder,
each participant choosing a suitable form for its identifier.

Non-Addressable Sender

TypeX supports the ability for a non-addressable sender to explicitly obtain messages from another TXM node.
This mechanism is similar to the WS-MakeConnection.

This is achieved using the TXM_AuthHeader as the sole element in a TXM message. This can be used for
exchanges that are of “pull” type, whereby the sender only provides the TXM_AuthHeader to an application
that will return messages specific to that sender. A typical example is invoking a “Get” service that returns a
message that is targeted to the address of the sender; in the event that the sender is not authorized, the
service would return a fault to the sender.

The UserData field can be used to refine the selection of returned message (see [TXPEXSPEC] for more details).
A response with an empty payload indicates that no further messages are available for that sender.

Reliability

There are three aspects of reliability addressed in TypeX. This capacity makes TypeX robust and flexible in the
selection of the reliability level required by an application. The three aspects addressed are:

• Point to point: addresses reliability between two adjacent TypeX endpoints. The TypeX extension XATAP
provides this capacity.

• End to End: addresses reliability between two applications. In TypeX, this is provided by positive and
negative delivery reports and XATAP between each pair of intermediate endpoints.

• Durability: this refers to the ability to safely store messages robustly in case of severe failures, such a
server crash. In TypeX, durability and reliability are prescribed by the field ReliabilityLevel, which should
be viewed a reliability policy parameter.

Each of these aspects is discussed in more detail in the following sections.

XATAP

The TypeX specification defines a lightweight reliability protocol termed XATAP (TypeX Application-To-
Application Protocol.) When TypeX is used over JMS—and the underlying MOM provides adequate reliability
such as persistence and notification—the use of XATAP is optional.

The purpose of XATAP is to respond to the TypeX requirements that stipulate the need for application to
application reliability. XATAP is an optional TXM extension and this protocol defines an approach for messaging

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-120

point-to-point reliability at the application level, where reliability is defined as:

1. Guaranteed delivery to the application: The receiving application acknowledges the reception of a message,
not the messaging stack.

2. Identification of potential duplicate messages: The protocol notifies a node that a message maybe a
duplicate. The deletion of a duplicate is left to the application, either at hub nodes or recipients, based on the
MessageId.

Each message that needs to be acknowledged is sent with a XATAP header that specifies the purpose of the
header and a XATAP identifier (SerialNumber). The following XML snippet presents a XATAP header that is sent
with the message to be acknowledged.

<TXM_XATAPHeader xmlns="http://www.iata.org/txm/xatap" TxmRelease="TXM2009A0">
<Context>XATAP_SEND</Context>
<SerialNumber>1</SerialNumber>

</TXM_XATAPHeader>

The corresponding acknowledgment is as follows:

<TXM_XATAPHeader xmlns="http://www.iata.org/txm/xatap" TxmRelease="TXM2009A0">
<Context>XATAP_ACK</Context>
<SerialNumber>1</SerialNumber>

</TXM_XATAPHeader

The acknowledgment header may consolidate many acknowledgments, i.e. more than one SerialNumber.

XATAP Reliability Model

The XATAP reliability model is presented in Figure 3.4.2-4 below. As shown in the illustration, the XATAP
reliability perimeter extends to the applications. The Sender/Receiver component is either the receiving or
sending component depending on the exchange pattern which can be one of one-way, two-way or duplex
exchanges.

The sequence of events in a TypeX reliable exchange is as follows:

A. The application source sends a message (1).

B. The sender (e.g. SOAP stack) sends the message (2,3).

C. Once received (4), the receiver forwards the message to the application (5).

D. The receiving application acknowledges the message (6).

E. The acknowledgment is sent back to application (7, 8, 9 and 10).

The application may be reliably decoupled from the XATAP component (e.g. a TypeX agent on a JMS bus). In this
manner, legacy applications can easily integrate TXM.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-121

Figure 3.4.2-4. XATAP Reliability Model

Reliability

The delivery reliability is achieved by the replay model. A message that is not acknowledged is simply resent
with same MessageId, but a different XATAP identifier (SerialNumber). XATAP has the advantage of being simple
and robust to failures. There is no need to persist state or to have contiguous XATAP identifiers.

Delivery Reporting

The TypeX specification provides for an explicit form of end-to-end reliability in the form of a delivery report
from the targeted application. When the optional Boolean field DeliveryNotificationRequest is set to true in the
outgoing message, the receiving application must send back a delivery report. The delivery report is treated as
a normal reliable message.

It should be noted that a Non-Delivery report is systematically sent to the sender if the message could not be
delivered to one or more targeted recipients. This is useful when there are intermediate nodes between the
participant applications.

Durability

The TypeX specification defines a policy parameter termed ReliabilityLevel that enables the specification of the
persistence or durability of a message. This parameter is dynamic, and is specific to each message. By default,
the parameter requires the receiving node to safe store the message. The duration of storage is specified in the
message information metadata (LifeTimeDays).

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-122

Session Management

This section presents a simple session mechanism connecting two applications to authenticate and ensure that
the remote application is available to receive traffic reliably. In the TXM context, the session management
component is termed XSM for TypeX Session Management. XSM is an optional TXM extension.

When TypeX is used over JMS and the underlying MOM provides adequate connection management, the use of
XSM is optional. Depending on the communication context between two TXM Nodes, a TXM Session handling
mechanism may be required to ensure better traffic flow management as well as to uniquely identify a message
exchange. The explicit opening and closing of a session is also an advantage of using session management as it
prevents dangling connections.

The primary benefit of XSM is its ability to provide permanent and/or long life sessions. A permanent session
provides enhanced performance and operator visibility for controlling and managing the traffic flow between
two TXM Nodes.

Three service messages (or commands) are used to manage TXM Sessions:

• Open: Request to establish a new session.

• OpenConfirm: Acknowledge the request for the new session.

• Close: Terminate a session

Two additional service messages are used to maintain XSM Sessions:

• StatusQuery: this is a heartbeat message during no traffic periods to determine if the receiving
application is alive.

• StatusResponse: Acknowledgment of the StatusQuery command.

For one-way exchanges, only the Client initiates the XSM session and sends XSM messages. The Server Node
simply replies with an acknowledgment to the XSM message received from the Client.

If the flow is bidirectional, either participant may initiate the opening of an XSM session. Once established, each
participant may send messages.

XSM Benefits

XSM benefits include:

• Determining if the application is available: This is essential to avoid sending and resending
messages in a futile manner—and consuming valuable resources—when the receiving application is
not available.

• Connection management: This provides better operation visibility and management, and may also
be used to control user access and message flow.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-123

• Unique channel identification: Exchanges can be uniquely identified by a) an XSM SessionId in
addition to the pair identifiers (logical addresses) for the sender and receiver, and, b) the InReplyTo
field in the response. This also permits a given sender to have several, albeit distinct, sessions with
a given receiver.

• Authenticate- avoid resource attack: The establishment of a secured XSM session, using the
TXM_AuthHeader (see examples in the appendix), enables a receiving application to validate and
authorize a sender. This also reduces the possibility of denial of service attacks.

TypeX Implementation Details
This section presents considerations for implementing TypeX.

Processing

This section presents the required characteristics of a TypeX implementation in order to provide the reliability
presented in the TypeX specification. For XATAP the processing is straightforward as the sender:

1. Sends a message with a XATAP header consisting of SerialNumber
2. Continues to send messages as in Step 1 until the maximum number of unacknowledged

messages has been reached (this is usually relatively small).
3. As messages are acknowledged, continue as in Step 1 and 2.
4. Messages that are not acknowledged are resent with the possible duplicate message (PDM) flag

set.

The receiver behaves as follows:

1. Receive a message with a XATAP header consisting of SerialNumber
2. Send an acknowledgment; it may also consolidate a number of acknowledgments in a single

XATAP acknowledgment message.
3. Continue with Step 1.

The processing for XSM is as follows:

1. The sender establishes a session—identified with a unique SessionId—with the remote application by
sending an Open message; the receiver responds with a confirmation if the sender is authorized.

2. Both sender and receiver now send heartbeat messages during no traffic periods (i.e. no messages) to
ensure that the communication path is valid and that the remote application is alive.

The XSM protocol is aimed at high throughput messaging over “permanent” connections. Both protocols are
lightweight with minimal overhead, and there is no need to maintain state other than the few pending
acknowledgment SerialNumbers.

The following sub-sections present normal TypeX for three different exchange patterns between two

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-124

applications. Processing when failures occur is dealt with in detail in the subsequent Message Use Cases
section.

Fire-and-Forget

This is the simplest MEP, consisting of a one-way message exchange. The message is sent with a XATAP
acknowledgment received in response. Note that for long running exchanges (consisting of many messages)
XSM is normally deployed.

Request/Response (Non-Addressable Client)

For this message exchange pattern, the XATAP protocol is not mandatory since the response itself is an
acknowledgment. It is important to remember that this communication is between two applications and not
two intermediate endpoints, providing a simplified request/response. For long running exchanges consisting of
many request/response pairs over a persistent HTTP connection, XSM is normally deployed.

Request/Response (Addressable Client)

For this message exchange pattern, the XATAP protocol is required as the response is transmitted over a
different connection and an acknowledgment is returned for the request in the back channel. The response is
then sent over the second connection and once the sender receives the response, it in turn responds with an
acknowledgment of that response.

Request and response are correlated using the InReplyTo field of the message information metadata.

When XSM is deployed for this pattern, there are two XSM sessions running concurrently over the two
connections. The sessions are correlated in the sense that if one fails, the other is also terminated.

Asynchronous Request/Response

In TypeX, this pattern is called a conversation because multiple related request/response pairs are possible in
client/server mode or peer to peer mode. Processing is identical to the previous pattern, with the only
difference being the prescribing of identifiers by each of the participants in order to maintain the conversation
—which consists of correlated pairs of requests and responses.

Client Side Impacts

This section discusses how the use of TypeX impacts the implementation and the resources on the client side,
i.e. the initiator of an exchange. The only requirement is for the client to store the request until the
acknowledgment is received.

Server Side Impacts

There are no specific requirements other than implementing the TypeX protocols for the server side.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-125

OpenTravel Requirements Crosscheck

This section provides compliancy of TypeX features to the OpenTravel requirements for reliable messaging. It
should be noted that certain characteristics that are not part of the standard could be provided by the
implementation.

Requirements TypeX Comment

MUST be open and freely available IATA SCR volume 7, version 1.0.

MUST support HTTP as a messaging protocol
MUST support the asynchronous message exchange
pattern

MUST Support secured delivery
TypeX has built-in support for W3C
signature and encryption. It also supports
WS-Security for SOAP based stack. This is
in addition to the support for HTTPS.

Messages sent MUST be received exactly once by the
receiving application

TypeX marks messages as potential
duplicates, enabling the elimination of
duplicates; the removal is implementation
dependent.

The sending application MUST be informed of any
failure of the message to arrive at its destination. Using the TypeX XATAP protocol.

MAY support other protocols
There are no constraints on the transport
protocols (support for SOAP/HTTP, JMS,
HTTP or TCP.)

SHOULD support other exchange patterns.
All standard exchange patterns are
supported, i.e. fire and forget, synchronous
and asynchronous.

MAY support sequence control. TypeX provides sequencing support, using
message group and sequence identifiers.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-126

Messaging Scenarios
This section presents a number of scenarios for a single use case, demonstrating how TypeX is used to provide
reliable exchanges. The purpose of this section is to highlight the issues surrounding reliable messaging when
errors occur.

The context used for all the presented scenarios is a simple application to application exchange over HTTP with
synchronous request/response MEP for a non-addressable sender. In this context, a synchronous response is
normally expected in the HTTP response to the sent request. The response is expected in the HTTP back
channel.

Failed to Receive

Description: In this use case the receiver fails to receive the message sent. Therefore, the receiver will never
send a response with a piggybacked acknowledgment.

TypeX Processing: The sender will resend the message, after a prescribed XATAP time window, until the
response and/or an acknowledgment are received. The re-sent message will be marked as a potential duplicate.

Failed to Respond

Description: In this scenario the sender receives the acknowledgment but not a response to the message sent,
however the receiver did receive the message. This implies that either the response was unavailable or lost in
the return path.

TypeX Processing: If an ack is received, then the response will be present as well since it is the application that
sends the ack, and not an intermediary.

Failed Connection

Description: In this scenario the connection between the communicating endpoints is lost after sending the
request.

TypeX Processing: If the XSM protocol is activated, the session will be closed. Once XSM is reestablished, the
request will be resent.

Failed Application

Description: In this scenario the receiving application is down or the connection between the receiving
application and the reliable receiver is down. The sender does receive an acknowledgment but no response to
the request.

TypeX Processing: If the XSM protocol is activated, then the unavailability of application will be detected and
the session will be closed, eliminating unnecessary communications. Once XSM is reestablished, messaging will
continue.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-127

TypeX Message Samples

The following XML samples define TypeX envelopes targeted to a single recipient using different message
exchange patterns.

The ReliabilityLevel is the default value (2) which implies that the message must be acknowledged and safe
stored.

The agent responsible for sending the message will add the following components in the TXM_Header:

• a TXM_Header/TXM_AuthHeader which never changes for a given sender,

• a TXM_BodyHeader/TXM_XATAPHeader if required by the ReliabilityLevel.

In a SOAP context, The TypeX envelope is sent in the SOAP envelope’s body.

For the following examples, the TXM_Header/TXM_AuthHeader looks like this:

<TXM_AuthHeader xmlns="http://www.iata.org/txm/auth" TxmRelease="TXM2009A0">
<SenderId>

<TYPEX_Address>
<Airline>TST</Airline>
<City>GRP</City>
<Department>TXM</Department>

</TYPEX_Address>
</SenderId>
<ReceiverId>

<TYPEX_Address>
<Airline>TST</Airline>
<City>CLT</City>
<Department>TXM</Department>

</TYPEX_Address>
</ReceiverId>
<SessionId>1</SessionId>

 </TXM_AuthHeader>

The TXM_BodyHeader/TXM_XATAPHeader will be:

<TXM_XATAPHeader xmlns="http://www.iata.org/txm/xatap" TxmRelease="TXM2009A0">
<Context>XATAP_SEND</Context>
<SerialNumber>1</SerialNumber>

</TXM_XATAPHeader>

Fire-and-Forget

In this section a simple one-way TypeX envelope is presented; no response is expected. The MEP is implicitly
Fire-and-Forget; the tag <FireAndForget> could explicitly be included.

<?xml version="1.0" encoding="UTF-8"?>
<txme:TXM_Envelope xmlns:txme="http://www.iata.org/txm/envelope" TxmRelease="TXM2009A0">

<txme:TXM_Header>
<txme:TXM_BodyHeader>

<txmm:TXM_MessageHeader xmlns:txmm="htp://www.iata.org/txm/msgheader"

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-128

TxmRelease="TXM2009A0">
<Information>

<MessageId>
<TypeXAddress>

<TYPEX_Address>
<Airline>TST</Airline>
<City>CLT</City>
<Department>TXM</Department>

</TYPEX_Address>
</TypeXAddress>
<OriginDate>2008-07-24+02:00</OriginDate>
<OriginTime>20:40:02.890+02:00</OriginTime>
<Number>1</Number>

</MessageId>
 <MessageReference>My ref</MessageReference>

</Information>
<Originator>

<OriginatorAddress>
<TYPEX_Address>

<Airline>TST</Airline>
<City>CLT</City>
<Department>TXM</Department>

</TYPEX_Address>
</OriginatorAddress>

</Originator>
<Destination>

<RecipientInformation>
<ResponsibilityFlag>Yes</ResponsibilityFlag>
<ActionType>TO</ActionType>
<DestinationAddress>

<TYPEX_Address>
<Airline>1G</Airline>
<City>NYC</City>
<Department>AA</Department>

</TYPEX_Address>
</DestinationAddress>

</RecipientInformation>
<NodeTrace/>

</Destination>
</txmm:TXM_MessageHeader>

</txme:TXM_BodyHeader>
</txme:TXM_Header>
<txme:TXM_Body>

<txme:TXM_Payload>
<!-- OTA Message -->

</txme:TXM_Payload>
</txme:TXM_Body>

</txme:TXM_Envelope>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-129

Synchronous Exchange

In this section a synchronous request/response TypeX envelope is presented. The request and response
envelopes are presented separately.

Request

<?xml version="1.0" encoding="UTF-8"?>
<txme:TXM_Envelope xmlns:txme="http://www.iata.org/txm/envelope" TxmRelease="TXM2009A0">

<txme:TXM_Header>
<txme:TXM_BodyHeader>

<txmm:TXM_MessageHeader xmlns:txmm="htp://www.iata.org/txm/msgheader"
TxmRelease="TXM2009A0">

<Information>
<MessageId>

<TypeXAddress>
<TYPEX_Address>

<Airline>TST</Airline>
<City>CLT</City>
<Department>TXM</Department>

</TYPEX_Address>
</TypeXAddress>
<OriginDate>2008-07-24+02:00</OriginDate>
<OriginTime>20:40:02.890+02:00</OriginTime>
<Number>1</Number>

</MessageId>
 <MessageReference>My ref</MessageReference>

</Information>
<Originator>

<OriginatorAddress>
<TYPEX_Address>

<Airline>TST</Airline>
<City>CLT</City>
<Department>TXM</Department>

</TYPEX_Address>
</OriginatorAddress>

</Originator>
<Destination>

<RecipientInformation>
<ResponsibilityFlag>Yes</ResponsibilityFlag>
<ActionType>TO</ActionType>
<DestinationAddress>

<TYPEX_Address>
<Airline>1G</Airline>
<City>NYC</City>
<Department>AA</Department>

</TYPEX_Address>
</DestinationAddress>

</RecipientInformation>
<NodeTrace/>

</Destination>
<ExchangePattern>

 <SendReceive>0</SendReceive>
</ExchangePattern>

</txmm:TXM_MessageHeader>
</txme:TXM_BodyHeader>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-130

</txme:TXM_Header>
<txme:TXM_Body>

<txme:TXM_Payload>
<!-- OTA Message -->

</txme:TXM_Payload>
</txme:TXM_Body>

</txme:TXM_Envelope>

Response (Note that the response MEP is implied as Fire-and-Forget, i.e. no response expected.)

<?xml version="1.0" encoding="UTF-8"?>
<txme:TXM_Envelope xmlns:txme="http://www.iata.org/txm/envelope" TxmRelease="TXM2009A0">

<txme:TXM_Header>
<txme:TXM_BodyHeader>

<txmm:TXM_MessageHeader xmlns:txmm="htp://www.iata.org/txm/msgheader"
TxmRelease="TXM2009A0">

<Information>
<MessageId>

<TypeXAddress>
<TYPEX_Address>

<Airline>1G</Airline>
<City>NYC</City>
<Department>AA</Department>

</TYPEX_Address>
</TypeXAddress>
<OriginDate>2008-07-24+02:00</OriginDate>
<OriginTime>20:40:49.890+02:00</OriginTime>
<Number>1</Number>

</MessageId>
<InReplyTo>My ref<InReplyTo>

</Information>
<Originator>

<OriginatorAddress>
<TYPEX_Address>

<Airline>1G</Airline>
<City>NYC</City>
<Department>AA</Department>

</TYPEX_Address>
</OriginatorAddress>

</Originator>
<Destination>

<RecipientInformation>
<ResponsibilityFlag>Yes</ResponsibilityFlag>
<ActionType>TO</ActionType>
<DestinationAddress>

<TYPEX_Address>
 <Airline>TST</Airline>
 <City>CLT</City>
 <Department>TXM</Department>
</TYPEX_Address>

</DestinationAddress>
</RecipientInformation>
<NodeTrace/>

</Destination>
</txmm:TXM_MessageHeader>

</txme:TXM_BodyHeader>
</txme:TXM_Header>
<txme:TXM_Body>

<txme:TXM_Payload>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-131

<!-- OTA Message -->
</txme:TXM_Payload>

</txme:TXM_Body>
</txme:TXM_Envelope>

Asynchronous Exchange

Request

<?xml version="1.0" encoding="UTF-8"?>
<txme:TXM_Envelope xmlns:txme="http://www.iata.org/txm/envelope" TxmRelease="TXM2009A0">

<txme:TXM_Header>
<txme:TXM_BodyHeader>

<txmm:TXM_MessageHeader xmlns:txmm="htp://www.iata.org/txm/msgheader"
TxmRelease="TXM2009A0">

<Information>
<MessageId>

<TypeXAddress>
<TYPEX_Address>

<Airline>TST</Airline>
<City>CLT</City>
<Department>TXM</Department>

</TYPEX_Address>
</TypeXAddress>
<OriginDate>2008-07-24+02:00</OriginDate>
<OriginTime>20:40:02.890+02:00</OriginTime>
<Number>1</Number>

</MessageId>
 <MessageReference>My ref</MessageReference>

</Information>
<Originator>

<OriginatorAddress>
<TYPEX_Address>

<Airline>TST</Airline>
<City>CLT</City>
<Department>TXM</Department>

</TYPEX_Address>
</OriginatorAddress>

</Originator>
<Destination>

<RecipientInformation>
<ResponsibilityFlag>Yes</ResponsibilityFlag>
<ActionType>TO</ActionType>
<DestinationAddress>

<TYPEX_Address>
<Airline>1G</Airline>
<City>NYC</City>
<Department>AA</Department>

</TYPEX_Address>
</DestinationAddress>

</RecipientInformation>
<NodeTrace/>

</Destination>
<ExchangePattern>

 <SendCallback>
<ConversationId>

<InitiatorId>123</InitiatorId>
<RecipientId>TXM _VOID</RecipientId>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-132

</ConversationId>
<Phase>continue</Phase>

</SendCallback>
</ExchangePattern>

</txmm:TXM_MessageHeader>
</txme:TXM_BodyHeader>

</txme:TXM_Header>
<txme:TXM_Body>

<txme:TXM_Payload>
<!-- OTA Message -->

</txme:TXM_Payload>
</txme:TXM_Body>

</txme:TXM_Envelope>

Response

<?xml version="1.0" encoding="UTF-8"?>
<txme:TXM_Envelope xmlns:txme="http://www.iata.org/txm/envelope" TxmRelease="TXM2009A0">

<txme:TXM_Header>
<txme:TXM_BodyHeader>

<txmm:TXM_MessageHeader xmlns:txmm="htp://www.iata.org/txm/msgheader"
TxmRelease="TXM2009A0">

<Information>
<MessageId>

<TypeXAddress>
<TYPEX_Address>

<Airline>1G</Airline>
<City>NYC</City>
<Department>AA</Department>

</TYPEX_Address>
</TypeXAddress>
<OriginDate>2008-07-24+02:00</OriginDate>
<OriginTime>20:40:49.890+02:00</OriginTime>
<Number>1</Number>

</MessageId>
<InReplyTo>My ref<InReplyTo>

</Information>
<Originator>

<OriginatorAddress>
<TYPEX_Address>

<Airline>1G</Airline>
<City>NYC</City>
<Department>AA</Department>

</TYPEX_Address>
</OriginatorAddress>

</Originator>
<Destination>

<RecipientInformation>
<ResponsibilityFlag>Yes</ResponsibilityFlag>
<ActionType>TO</ActionType>
<DestinationAddress>

<TYPEX_Address>
 <Airline>TST</Airline>
 <City>CLT</City>
 <Department>TXM</Department>
</TYPEX_Address>

</DestinationAddress>
</RecipientInformation>
<NodeTrace/>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-133

</Destination>
<ExchangePattern>

<ReceiveCallback>
<ConversationId>

<InitiatorId>myrowid</InitiatorId>
<RecipientId>123</RecipientId>

</ConversationId>
<Phase>continue</Phase>

</ReceiveCallback>
 </ExchangePattern>

</txmm:TXM_MessageHeader>
</txme:TXM_BodyHeader>

</txme:TXM_Header>
<txme:TXM_Body>

<txme:TXM_Payload>
<!-- OTA Message -->

</txme:TXM_Payload>
</txme:TXM_Body>

</txme:TXM_Envelope>

SOAP Binding for TXM

The binding consist of TXM_Envelope in SOAP body. This provides several benefits in terms of simplicity, ease of
validation, ease of WSDL specification, preserves TXM independence with respect to other transports and
remains coherent with other bindings for TXM (JMS, HTTP Rest).

TXM over SOAP is no different than sending any other message, there is no impact on the SOAP engine, no
changes are required to the SOAP envelope. Details of TXM binding to SOAP/HTTP can be found in [TYPEXSPEC]
and [TYPEXIMPGUIDE].

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope>
<soap:Header>
...
</soap:Header>
<soap:Body>
 <operationName xmlns=="http://.... ">
<txme:TXM_Envelope xmlns:txme="http://www.iata.org/txm/envelope">

...
 </txme:TXM_Envelope>
 </operationName>
</soap:Body>
</soap:Envelope>

JMS Binding for TXM

The approach is to use two JMS queues as shown in Figure 3.4.2-5.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-134

Figure 3.4.2-5. JMS Binding for TXM

This configuration is targeted at users requiring high-throughput bidirectional messaging, allowing each node to
send messages at will.

Thus, for each sending node, the exchange pattern consists of a one-way exchange. Whenever a sent message
triggers a response from the receiver, then that response is always expected on the sender’s incoming queue,
never on its outgoing queue.

A TypeX envelope is sent as a JMS TextMessage. To facilitate processing, improve performance and minimize
resource usage, a number of TypeX fields may be copied onto JMS properties. The JMS and corresponding
TypeX properties utilized are as follows:

• JMS Priority: TypeX Priority

• JMS Expiration : TypeX ExpirationTime

• JMS Type: any of TXM content type (e.g. TXM_PAYLOAD, TXM_REPORT, etc.)

• JMS CorrelationID: a random number used for request/response exchanges

• JMS DeliveryMode: TypeX ReliabilityLevel

If messages cannot be persisted on the queue and reliability is required (ReliabilityLevel > 0), then the TypeX
XATAP reliability protocol should be used to ensure that messages are reliably received through an application
acknowledgment.

The optional TypeX Session Management protocol (XSM) is a simple but reliable way to establish a dual JMS
exchange channel as described above. It can be used not only establish a session, but it can also be used to
ensure explicitly that the remote node is still connected and active. The XSM Open command guarantees that
the receiving application is active, not just the receiving queue. In addition, an explicit close can be sent, so that
each node releases its JMS resources.

Additional information and details on the TXM binding to JMS can be found in [TYPEXIMPGUIDE].

Of note is that the W3C had produced SOAP over JMS specification, currently a candidate recommendation. As
with SOAP/HTTP, TypeX messaging over SOAP/JMS is achieved transparently with no changes required.

References

Note: These references were current at the time of writing, but may have been superseded by more recent
versions.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.w3.org/TR/2009/CR-soapjms-20090604/
http://www.iata.org/padis
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-135

1. [TYPEXIMPGUIDE] TypeX Implementation Guide, final draft Dec 31 2008, IATA document.
http://www.iata.org/padis

2. [TYPEXSPEC] TypeX Specification, version 1.0, IATA SCR volume 7. http://www.iata.org/padis

3. [WSMC] Web Service Make Connection, version 1.1, 2 Feb 2009, http://docs.oasis-open.org/ws-
rx/wsmc/200702/wsmc-1.1-spec-os.pdf

4. [WSRM] Web Service Reliable Messaging, version 1.2, 2 Feb 2009, http://docs.oasis-open.org/ws-
rx/wsrm/200702/wsrm-1.2-spec-os.pdf

5. [WSRMP] Web Service Reliable Messaging Policy Assertion, version 1.2, 29 Nov 2008, http://docs.oasis-
open.org/ws-rx/wsrmp/200702/wsrmp-1.2-spec-cs-02.pdf

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://www.iata.org/padis
http://www.iata.org/padis
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-136

General Technical Implementation: Session Management

Introduction
Users of travel booking sites on the Internet will understand the importance of a session. If a user is booking a
trip on a website, he/she will most likely be led through a series of web pages. To ensure that all of the user‘s
information is collected into a single data set, the server will create a logical container, known as a session,
within which the data is collected. Without a session, the server would not be able to maintain a stable data set
across numerous, related transactions.

The exchange of data between two systems also often requires that a session be established for the same
purpose. As messages are exchanged, the server system will maintain the session status. Session management
is required on any system in which knowledge of previous messages is required because subsequent messages
reference them. Typically, session management requires the passing of a token that identifies the history
associated with that session.

Within the course of a given transaction, a session will be in one of the following three states:

• Connected—the session is connected
• In conversation—the session is facilitating data exchange
• Disconnected—the session is disconnected.

Software logic manages the transition between these states based on the transaction sequence. Typically, each
transaction will fall within one of the following categories:

• First—requires that a session be established (connected) and a history started
• Middle—requires the retrieval of an existing session history for use in processing, which is modified and

stored
• Last—requires that the transaction sequence be completed and the session closed (disconnected)
• One-shot—is equivalent to a sessionless transaction in that the session is created, used, and closed

within the course of processing a single message.

A Lightweight Session Management Solution using WS-Addressing EPR
This section illustrates an open standard and interoperable “lightweight” session management solution based
on WS-Addressing endpoint reference (EPR) to serve as guideline for OpenTravel implementers who leverage
Web services for their travel and hospitality systems.

OpenTravel schemas have established interoperability for message exchange among travel systems. Use of a
standardized technique such as WS-Addressing EPR for implicitly propagation of service context and the session
ID in the header of the application messages is keyed to ensuring an interoperable solution. In taking the WS-
Addressing EPR approach the Client application does not need to know about the content of the EPR. Thus the
Client code can be reused for interacting with any server who implements the Web services based on
OpenTravel standards, and hence makes development less error-prone.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-137

WS-Addressing Concepts
WS-Addressing is a standard that provides transport-neutral mechanisms to address Web services and
messages. Specifically, the specification defines an element to identify Web service endpoints and to assure
end-to-end endpoint identification in messages.

An EPR conveys the information associated with an endpoint. It is extensible allowing additional information,
such as session identifier, to be included in an EPR. This provides the ability to associate application state data
with an EPR which can be used for identifying Web services instances. An EPR representing a Web service
instance will contain the Web service address (URI) and some unique identifier - the ability that will be
exploited for identifying session context.

Using EPRs in Web Applications
If the client application knows that it will issue several service calls in short succession, or the server application
knows that the resources and data it acquired for processing a request will normally be re-used in subsequent
requests, the establishment of a session is desirable to minimize overhead. For example, if a connection to a
data source or legacy system at the server is needed to process the client’s requests, this connection can be
reused throughout the session.

This leads to the question of “How can the server correlate the context container with the different related
requests from the client?” This answer to this question is essential if multiple customers are making online
reservations concurrently as there will be several context containers created and it is imperative that these are
correlated to subsequent requests for the same reservation transaction.

Typically, session management requires the passing of a token or session ID for each client request that the
server uses to associate all appropriate requests to a session.

The next section details a Flight Reservation use case. The use case is only for the purpose of illustrating the
series of interactions and data exchanged between the systems and how an EPR is used to identify and manage
the session established for reuse of data and/or resources across related transactions.

Use Case: Flight Reservation

As shown in figure 3.5-1, a flight reservation involves:

• Requesting available flights for a given set of search criteria

• Selecting a flight from the list of flights presented

• Making the actual reservation after a successful card payment.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-138

Figure 3.5-1. Flight Reservation Use Case Diagram

Figure 3.5-2 depicts the Flight Reservation use case in detail. In this scenario, the customer has obtained a list of
available flights based on their search criteria and has selected a particular flight for travel. The customer then
enters the passenger information along with credit card (payment) details. If the credit card payment is
successful, the reservation for the customer is confirmed, and a PNR (Passenger Name Record) is sent to the
customer. A PNR is where the details of the passenger’s reservation are stored.

The Flight Reservation Sequence diagrammed in Figure 3.5-3 illustrates the sequence of activities and
OpenTravel messages exchanged with the Online Reservation system for the Flight Reservation use case. In this
scenario, the GDS/CRS has implemented OpenTravel-based web services for the Online Reservation System to
facilitate access to its mainframe-based travel reservation system. During the course of the customer making a
flight reservation, the Online Reservation System has invoked several web service request/response messaging
exchanges with the GDS/CRS as follows:

• The flow starts with the customer (end user) entering search criteria in to an Online Reservation System
to get a list of flights. This request in turn calls the GDS/CRS’s OTA_AirAvailRQ/RS request/response web
service to check flight availability.

• Once a particular flight is selected, the customer then requests the trip pricing. The online reservation
system calls the GDS/CRS’ OTA_AirPriceRQ/RS request/response web service to request pricing
information for the selected flight.

• After finalizing the pricing, the customer enters all other necessary passenger information and the
credit card (payment) details to book the particular trip. The online reservation system then calls the
Payment System’s OTA_AuthorizationRQ/RS request/response web service to confirm the credit card
payment.

• Finally, the online reservation system calls the GDS/CRS’ OTA_AirBookRQ/RS request/response web
service to book the flight.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-139

Figure 3.5-2. Flight Reservation Use Case Diagram

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-140

Figure 3.5-3. Flight Reservation Sequence Diagram

Designing the Solution
To manage the service-related data for the various web service transactions (from the online reservation system
which references the same reservation made by a customer), the service provider needs to establish a session
context or work area. An EPR (end point reference) will be established to carry a unique session ID for each
client request that the server uses to identify the session context.

Figures 3.5-4 and 3.5-6 present two mechanisms to initiate the start of a session, i.e. allow the server to set up
a session context, and to create an EPR with a unique Session ID for tracking in-coming requests that belong to
the same session.

Figure 3.5-4 shows a client application that is explicitly requesting the service provider to initiate a new session
by sending a CreateSession request (to the service provider.) The response contains a unique EPR in the SOAP
body.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-141

Figure 3.5-4. Client sends CreateSession, Service Provider returns unique EPR in the response

For service providers that want to allow the clients to initiate the start and close session requests, i.e.
CreateSession and CloseSession, the OTAServiceManagement web service should be implemented.

Figure 3.5-5. Service definition with CreateSession and CloseSession operations

The OTASessionManagmentService interface has two operations: CreateSession and CloseSession. The
CreateSession operation has no input parameter. The response returns the output parameter OTA_EPR of
OTA_EPR type (see the schema definition in Figure 3.5-8). The CloseSession operation has no input parameters.
The Client will use the EPR received from the CreateSession call to send the CloseSession request. It is a best
practice for the Client to call CloseSession whenever it has called CreateSession (that requested that the service
provider start a new session.)

Figure 3.5-6 below shows the client application sending the first travel business request, OTA_AirAvailRQ, to the
service provider.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-142

Figure 3.5-6. Client initiates business request, OTA_AirAvailRQ, server returns EPR with Session ID

In this mechanism, the service provider implicitly establish a new session based. A unique EPR, called OTA_EPR
of OTA_EPR_Type (see schema definition in Figure 3.5-8), will be created and returned in the SOAP Header of
the Response. This new header carries the data that is not part of the payload. It is advisable to declare this
header information in the WSDL as part of a Web services definition to document the transfer of the OTA_EPR
in the header part of the SOAP envelope. This SOAP header can be defined in the WSDL definition in two ways:
1) Explicit headers, and, 2) Implicit headers and each of these are described below.

Explicit Header
In an explicit header definition, the OTA_EPR is defined as part of the Service <portType>. As shown in Figure
3.5-7, the OTA_EPR message part is declared as a part of the OTA_AirAvailRS response message--which is an
output message of the CheckAirAvailability <portType>.

The SOAP binding defines that the OTA_EPR is transferred in the SOAP header part of the response message.
Explicit header definition essentially includes an OTA_EPR in the Web service external interface. The message
part that is transferred in the SOAP header becomes an additional parameter of the service interface.

………
<!-- Define request and response message. -->
 <wsdl:message name="OTA_AirAvailRQ">
 <wsdl:part name="OTA_AirAvailRQ" element="ota:OTA_AirAvailRQ"/>
 </wsdl:message>
 <wsdl:message name="OTA_AirAvailRS">
 <wsdl:part name="OTA_AirAvailRS" element="ota:OTA_AirAvailRS"/>
 <wsdl:part name="OTA_EPR" element="ota:OTA_EPR"></wsdl:part>
</wsdl:message>

<!-- Define SOAP interface. -->
<wsdl:portType name="CheckAirAvailability">
 <wsdl:operation name="CheckAirAvailability">
 <wsdl:input message="impl:OTA_AirAvailRQ" name="OTA_AirAvailRQ"/>
 <wsdl:output message="impl:OTA_AirAvailRS" name="OTA_AirAvailRS"/>
 </wsdl:operation>
</wsdl:portType>

<!—Define SOAP binding -->

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-143

 <wsdl:binding name="spmSoapBinding" type="impl:CheckAirAvailability">
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <!-- Define operation using defined messages. -->
 <wsdl:operation name="CheckAirAvailability">
 <wsdlsoap:operation soapAction="CheckAirAvailability"/>
 <!-- Use 'literal' to include OTA XML as-is. -->
 <wsdl:input name="OTA_AirAvailRQ">
 <wsdlsoap:body namespace="http://localhost/services/spm/spm" use="literal"/>
 </wsdl:input>
<wsdl:output name="OTA_AirAvailRS">
 <soap:header use="literal" part="OTA_EPR" message="impl:OTA_AirAvailRS"></soap:header>
<wsdlsoap:body namespace="http://localhost/services/spm/spm" use="literal"
 parts=”OTA_AirAvailRS”/>
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

 <!-- Define SOAP interface with previously declared binding. -->
 <wsdl:service name="CheckAirAvailabilityService">
 <wsdl:port binding="impl:spmSoapBinding" name="spm">
 <wsdlsoap:address location="http://www.acme.com/services/ota"/>
 </wsdl:port>
 </wsdl:service>
 ………

Figure 3.5-7. Explicit Soap Header in WSDL, i.e. OTA_EPR is defined in the portType

Implicit Header
In an implicit header definition, the OTA_EPR message part is defined but will not be included in the service
<portType>--leaving the service interface unaffected. Extra code will be written (or generated) to handle the
addition of the OTA_EPR (that is not part of the portType) in the SOAP header.

………
<!-- Define request and response message. -->
 <wsdl:message name="OTA_AirAvailRQ">
 <wsdl:part name="OTA_AirAvailRQ" element="ota:OTA_AirAvailRQ"/>
 </wsdl:message>
 <wsdl:message name="OTA_AirAvailRS">
 <wsdl:part name="OTA_AirAvailRS" element="ota:OTA_AirAvailRS"/>
</wsdl:message>
 <wsdl:message name="OTAEPR">
 <wsdl:part name="OTA_EPR" element="ota:OTA_EPR"></wsdl:part>
</wsdl:message>
<!-- Define SOAP interface. -->
<wsdl:portType name="CheckAirAvailability">
 <wsdl:operation name="CheckAirAvailability">
 <wsdl:input message="impl:OTA_AirAvailRQ" name="OTA_AirAvailRQ"/>
 <wsdl:output message="impl:OTA_AirAvailRS" name="OTA_AirAvailRS"/>
 </wsdl:operation>
</wsdl:portType>
………

Figure 3.5-8. Implicit Soap Header in WSDL, i.e. OTA_EPR is NOT defined in the portType

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-144

Figure 3.5-9 shows the use of the EPR established above for correlating related service requests to the proper
instance of the session context.

Figure 3.5-9. Using EPRs to correlate subsequent web service requests from a client

So how does this work? The following section describes the interactions between the Client and the Server
applications to illustrate how the EPR concept is applied for correlating the session context to related request
service calls:

1. The Client starts a service call using:
• CreateSession call, or,
• Travel business call (i.e., the OTA_AirAvailRQ for flight availability.)

2. The Service Provider establishes a connection with the Reservation system on the mainframe--retrieving the
information it requires--and provisioning the reservation context based on the Client’s credentials.

3. The Service Provider then creates a unique EPR, i.e. OTA_EPR, and stores it with the resources (typically data
and connection) in a session table.

4. The Service Provider then returns a response (with a unique EPR) that identifies the created session context:
• For the CreateSession request, it returns a response that contains a unique EPR in the SOAP body,
• For a travel business request, it returns OTA_AirAvailRS for the flight availability response (that includes
a unique EPR in the SOAP header.)

5. The Client then sends subsequent message exchanges (i.e. OTA_AirPriceRQ/RS and OTA_AirBookRQ/RS) to
the OTA_EPR. The Client gets the OTA_EPR as follows:

• For CreateSession request, the Client gets the OTA_EPR returned as the payload of the response,
• For a travel business request, the Client gets the OTA_EPR from the SOAP header.

6. The Service Provider then validates the OTA_EPR, accessing the service container with the resources stored in
previous service requests with the supplied EPR.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-145

7. The Service Provider then sends a response back to the Client. Steps 5-7 will be repeated as necessary.

8. The Service Provider terminates the session when:
• The Client no longer needs this particular session context and invokes the CloseSession service call to

the OTA_EPR, or,
• When the Service Provider no longer needs this particular session.

9. The Service Provider cleans up the context container, closes any connections to the mainframe reservation
system and removes the entry from its session table--which effectively invalidates the EPR.

The Service Provider will and should perform step 9 automatically if there is prolonged inactivity on a particular
session, i.e. a timeout or a connection failure.

Figure 3.5-10 contains the schema definition for the new OTA EPR Type (referenced in the
OTASessionManagmentService) and the OTA_EPR included in the SOAP Header (implicit new session creation).

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns="http://www.opentravel.org/OTA/2003/05"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 targetNamespace="http://www.opentravel.org/OTA/2003/05" elementFormDefault="qualified"
 attributeFormDefault="unqualified">

<xs:import namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 schemaLocation="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>

<xs:complexType name="OTA_EPRType">
<xs:complexContent>

<xs:extension base="wsa:EndpointReferenceType"/>
</xs:complexContent>

</xs:complexType>
<xs:element name="OTA_EPR" type="OTA_EPRType">

<xs:annotation>
<xs:documentation>EPR for storing session data for session context

identification"</xs:documentation>
</xs:annotation>

</xs:element>
</xs:schema>

Figure 3.5-10. EPR schema to store application data for session identification

The Server application is responsible for generating a unique ID for the session identification, storing the ID in
the EPR, and tracking the requests; while the Client application remains focused on the business
implementation. The format of the EPR (with inclusion of the session ID) is implementation specific to the
server, and the client application should not care. Figures 3.5-11 and 3.5-12 provide two examples of an EPR
with a Session ID.

<OTA_EPR>
 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>
 <wsa:ReferenceParameters>
 <appl:SessionID xmlns:appl=”http:// Business456.com”>

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-146

 urn:uuid:6733e337c0a901036f206f2089a1870b
 </appl:SessionID>
 </wsa:ReferenceParameters>
</OTA_EPR>

Figure 3.5-11. Session ID is stored in a Reference Parameter in an EPR

<OTA_EPR>
 <wsa:Address>http://Business456.com/serviceA/789?
SessionID=6733e337c0a901036f206f2089a1870b
 </wsa:Address>
</OTA_EPR>

Figure 3.5-12. Session ID is appended as a query parameter in the URL

In summary, the solution described covers two different mechanisms to initiate the creation of a new session
context:

The Client explicitly sends a CreateSession request

This allows the client application to inform the server to create a session context. This is useful in the case when
the client knows it will issue several service calls in short succession, as it informs the server to create a session
context to store resources and data that can be re-used in subsequent calls.

The Server implicitly creates a session context

This allows the server application to control when to create a session context implicitly. This is useful in the case
where the server knows the resource and data it acquired for processing the current request could be re-used by
other requests, and typically, related requests will follow.

Service providers can choose to implement either or both of the above mechanisms, and clearly communicate
to the client the methods supported. The implementation of the CreateSession and CloseSession must follow
the service interface defined in the OTASessionManagementService WSDL. Both mechanisms must implement
the unique EPR based on the OTA_EPR schema.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-147

XML Data Binding

Introduction
The OpenTravel data specification (XML schemas) is platform independent and does not require that any
particular programming environment or language be used to transmit and consume XML data. Nevertheless,
many modern software systems leverage the object-oriented programming model when working with XML
data.

As XML and object orientation have become dominant IT trends in recent years, it is no surprise that their
coexistence has spurred the release of new XML data-binding technologies and tools that bridge the two. XML
data-binding tools interpret XML schema data structures and create a framework of software objects, which
developers can then augment with behavior.

Once complete, the software objects will be populated with data from incoming instance documents (following
XML schema validation). The business value of these tools is significant because they lower the effort and cost
associated with creating software applications that use XML schema data formats (such as the OpenTravel
specification) as a primary interface point with trading partners.

Figure 3.6-1 depicts a high-level view of how XML data binding fits into a system architecture:

Figure 3.6-1. XML Data Binding

Within an application server software environment, an XML Schema (XSD) is processed by an XML data binding
tool and thereby converted into object proxies for subsequent customization and business logic development.

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-148

Design Considerations
Because XML data binding creates an object-oriented reflection of the data structures within a schema library,
the way those schemas are designed is an important consideration for implementers. For OpenTravel, schema
design is prescribed by OpenTravel XML Schema Best Practices. Implementers who identify aspects of those
best practices that present design challenges at the object level should submit comments accordingly.

Tools Available
The following are various XML data-binding tools/environments and relevant issues that an OpenTravel
implementer should be familiar:

Commercial Tools

• Liquid XML 2006—advanced Wizard driven data-binding tool for generating C++, C# .Net, Java, and
Visual Basic 6 components from XSD, XDR, and DTD schema files.

Java Tools

• Castor—an open source object/XML/relational mapping tool

• Eclipse Modeling Framework (EMF)—an open source framework that supports dynamic and static
binding

• Hydrate—an open source relational/object/XML mapping tool

• Java Architecture for XML Binding (JAXB)—part of the Java Web Services Developer Pack (JWSDP) that
supports the generation of Java classes from XML schemas

• JiBX—an open source (modified BSD), high-performance Java/XML binding framework

• XMLBeans—a data binding over Document Object Model view of data

• CookXml—an open source dynamically configurable XML binding tool

• WSDL2Java—an open source tool provided with the Apache Axis toolkit.

• OpenLaszlo—an open source, JavaScript-based, rich Internet application programming language

Microsoft Tools

• WSDL.exe—tool integrated into the language via the following Net attributes:

◦ System.Xml.Serialization.XmlRootAttribute, and,

◦ System.Xml.Serialization.XmlElementAttribute

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

OpenTravel Implementation Guide 1-149

Delphi Tools

• XML Data Binding Wizard—tool, integrated into the language, that can generate appropriate classes
and interfaces from either an example XML file or XSD schema

C++ Tools

• CodeSynthesis XSD—an open source data binding tool that provides an event-driven, SAX-like C++
mapping in addition to the standard, tree-like in-memory representation

• LMX—code generator that runs on a Windows PC, but the output is generated in C++ source code that
is portable to most platforms that support C++ templates and basic STL containers, providing a
complete XML solution that does not require additional components to interact with XML data (the
code generator comes with its own lightweight XML pull parser)

• xmlbeansxx—a C++ library for easing the processing of XML data, which is very similar to and was
inspired by Apache XMLBeans (by The Apache Xml Project).

(c) 2010 OpenTravel Alliance www.opentravel.org www.OpenTravelForum.com

http://www.opentravel.org/
http://www.OpenTravelForum.com/

	Introduction
	Guide Chapters
	Acknowledgments

	The OpenTravel Alliance
	Mission and Objectives
	Organizational Structure
	Key Activities
	Specification Release Process
	Extensible Markup Language (XML)
	XML Schemas

	General Functional Implementation
	OpenTravel Schema Design Best Practices
	OpenTravel Schema Architecture
	Message Level XML Schemas
	Function Specific XML Schemas
	Industry Common Types XML Schemas
	Common Types XML Schemas
	Simple Types XML Schemas

	Supporting Architecture
	Namespaces
	File Naming
	Enumerations and Code Lists
	Enumerations
	OpenTravel Code Lists
	External Code Lists

	Success/Warnings/Errors

	Message Exchange Patterns
	Request / Response (RQ/RS)
	Notif

	Generic Message Functionality
	OTA_ReadRQ
	OTA_UpdateRQ/RS
	OTA_DeleteRQ/RS
	OTA_CancelRQ/RS
	OTA_FileAttachmentNotifRQ/RS
	OTA_NotifReportRQ/RS
	OTA_PingRQ/RS
	OTA_ScreenTextRQ/RS

	General Technical Implementation
	Getting Started
	Get Involved
	Understand OpenTravel Resources
	OpenTravel Webinars
	OpenTravel Forum
	OpenTravel Wiki
	OpenTravel Message Users Guide
	Online XML Schemas
	OpenTravel Website
	OpenTravel Alliance on Linked In
	OpenTravel Mailing Lists

	Identify OpenTravel Roles and Contacts
	Participate

	Identify Functional Requirements
	Document Business Process Flow
	Identify OpenTravel Messages
	Identify Reusable Content

	Identify Non-Functional Requirements
	Ensuring a Stable Architecture and Interoperability with Trading Partners
	Define Service Architecture

	Develop the Specification
	 Submit Project Team Proposal(s)
	Submit Comments
	Create Draft XML Schema
	Create Business Scenarios and Instances

	Implement the Specification
	Identify Usage Profiles
	Define Configuration Management
	Test Sample XML Instances

	Follow Up
	Register Messages
	Provide Feedback

	Non-Functional Requirements
	Payload Transaction Management
	State Maintenance
	Message Transport
	Definitions and Conventions

	SOAP Messaging
	Purpose
	The SOAP Transport Protocol
	The Need for Interoperability
	Scope
	References

	Philosophy of Interoperability
	SOAP Version 1.1 and 1.2
	SOAP Messaging and SOAP RPC
	Differences between SOAP Messaging and SOAP RPC
	WSDL's Document/ Literal Binding
	SOAP Messaging Benefits
	SOAP Messaging vs. RPC Guidelines

	SOAP Action URI
	SOAP Messaging and the SOAP Action URI
	SOAP Intermediaries
	SOAP Action URI Guidelines

	SOAP Envelope Content
	SOAP Header Content
	SOAP Body Content
	SOAP Attachments
	SOAP Fault vs. OpenTravel Error
	Examples
	OTA_ReadRQ - Correct
	OTA_ReadRQ - Incorrect - Escaped XML
	OTA_ReadRQ - Incorrect - Wrapped in Other XML
	OTA_ProfileReadRS - Successful, Correct
	OTA_ProfileReadRS - Unsuccessful, Correct (Application-Level Error)
	OTA_ProfileReadRS - Unsuccessful, Correct (SOAP-Level Error)
	Sample SOAP Messaging WSDL for OpenTravel
	SOAP with Attachments Sample
	WS-Security Token Sample
	XML-Signature Sample
	XML-Encryption Sample, Correct

	HTTP Messaging
	Background
	2001C OpenTravel Infrastructure Guidelines
	Design Goals of OpenTravel (2001C)

	The Need for Interoperability
	Emerging Trends
	New Design Goals
	Requirements for Interoperability

	OpenTravel Transport Protocol Reference: HTTP
	Philosophy of Interoperability
	Simple HTTP POST vs. ebXML
	Standard HTTP
	HTTP Message Content
	Encryption
	Authentication

	Other Features
	Logging

	Web Service Description
	Introduction
	Terminology
	Purpose
	Scope

	WSDL Best Practices
	Overview
	WSDL Definition

	OpenTravel WSDL Creation
	Building Modular WSDL
	Creating an Interface Definition WSDL
	Creating an Implementation Binding WSDL
	Implications to Toolkit Use/Test Results

	OpenTravel WSDL Reference
	W3C WSDL Usage Breakdown
	Interface Definition WSDL Sections
	Implementation Binding WSDL Sections

	OpenTravel WSDL Usage Breakdown
	Interface Definition WSDL Rules
	Implementation Binding WSDL Rules

	Examples
	Consolidated Interface Definition and Implementation Binding WSDL
	Incorrect Schema Import

	Authentication
	Introduction
	Terminology
	Purpose
	Scope

	Additional Non-Functional Requirements
	Connection Management
	Synchronous and Asynchronous Messaging
	Synchronous Messaging
	Asynchronous Messaging

	Transport Security
	Payload Security
	Message Integrity
	Message Encryption
	Authentication
	Authorization
	Security Policies (per process)
	Quality of Service
	Guaranteed Delivery
	Message Priority
	Message Lifetime
	Flow Control
	Message Bundling
	Service-Level Agreements

	OpenTravel Reliable Messaging Guidelines
	Web Services Reliable Messaging (WS-RM)
	Introduction
	Purpose
	Scope

	OpenTravel Messaging Requirements
	OpenTravel Messaging Context
	Reliable Messaging Definition
	OpenTravel Messaging Requirements
	Terminology

	WS-RM Overview
	Interoperability
	WS-RM Messaging Model
	Security
	Sequences
	Essential Properties
	Delivery to Non-Addressable Endpoints
	Essential Properties

	WS-RM Implementation Details
	Processing
	Request/Response (Non-Addressable Client)
	Request/Response (Addressable Client)
	Securing reliable message exchange
	Client Side Impacts
	Server Side Impacts

	OpenTravel Requirements Crosscheck
	Messaging Scenarios
	Failed to Receive
	Failed to Respond
	Failed Connection
	Failed Application

	Sample OpenTravel Messages with WS-RM Enabled
	Synchronous Request/Response
	Asynchronous Request/Response
	Security Enabled for Secure Reliable Messaging Exchange

	References
	Web Services Specifications:
	Web Service Resources:
	Vendors and software products providing WS-Reliable Messaging support:

	TypeX Reliable Messaging
	Introduction
	Purpose
	Scope
	OpenTravel Messaging Requirements

	TypeX Overview
	Interoperability

	TypeX Messaging Context
	Essential Properties
	TypeX Envelope
	Transports
	Message Exchange Patterns
	Non-Addressable Sender
	Reliability
	XATAP
	Reliability
	Delivery Reporting
	Durability
	Session Management
	XSM Benefits

	TypeX Implementation Details
	Processing
	Fire-and-Forget
	Request/Response (Non-Addressable Client)
	Request/Response (Addressable Client)
	Asynchronous Request/Response
	Client Side Impacts
	Server Side Impacts

	OpenTravel Requirements Crosscheck
	Messaging Scenarios
	TypeX Message Samples
	Fire-and-Forget
	Synchronous Exchange
	Asynchronous Exchange
	SOAP Binding for TXM
	JMS Binding for TXM

	References

	General Technical Implementation: Session Management
	Introduction
	A Lightweight Session Management Solution using WS-Addressing EPR
	WS-Addressing Concepts
	Using EPRs in Web Applications
	Use Case: Flight Reservation

	Designing the Solution
	Explicit Header
	Implicit Header
	The Client explicitly sends a CreateSession request
	The Server implicitly creates a session context

	XML Data Binding
	Introduction
	Design Considerations
	Tools Available
	Commercial Tools
	Java Tools
	Microsoft Tools
	Delphi Tools
	C++ Tools

